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1.Systems Overview

Track1(RankA)

1. Front-end speech enhancement

2. Acoustic model

3. Alignment and Strict cleanup

4. Chain-model tree leaves

Track1(RankB)
1. Language model rescore

2. End-to-End Model

Track2

1. Acoustic features

2. Acoustic model

3. Clustering algorithms

4. Variational Bayesian refinement

5. Model fusion



2. Systems  for Track1(RankA)

l System is consist of Front-end, Gmm-Hmm 
and NN components



2. Systems  for Track1(RankA)
2.1 Speech enhancement

u Weighted Predcition Error(WPE):  Using nara_wpe tool and baseline Wpe configuration for derverberation
u Guided Source Separation (GSS):  Baseline Gss with well-trained ASR model alignment
u Beamforming: Beamformit, Cgmm-MVDR
u Half-sum: Average the left and right channels of worn data



2. Systems  for Track1(RankA)
2.2 Data Augmentation

Ø Worn Data

1. speed and volumn perturbation

2. estimated noise injection

3. simulated RIR: The RIR was generated according to the training                  
data floorplan’s configurations.

Ø Array Data:  24 and 12 micorphones GSS with various context 
length

Ø During training: SpecAugment



2. Systems  for Track1(RankA)
2.3 GMM-HMM Training

Ø Strict cleanup : remove parts of speech, which has high WER

Ø Floorplan RIRs augmentation;

Ø Extract noise from CHiME-6 training data



2. Systems  for Track1(RankA)

Ø 2.3 Chain Acoustic Model

Nnet training process 

Ø Acoustic Model
1.Res-cnn-tdnnf-self-attention
2.Res-cnn-fsmn
3.Spec-aug-cnn-tdnnf
4.Multi-cnn-tdnnf



2. Systems  for Track1(RankA)
2.3 Chain Model Training

Ø Neural-Network Alignment

GMM-HMM

Chain
without subsampling

Chain

Alignment

Alignment

Ø Chain-model tree leaves

tree leaves

5000

Ø Training criterion

• LF-MMI;

• LF-bMMI;



2. Systems  for Track1(RankA)
2.4 Decode

Ø Guided source separation
l Alignment according to well-trained ASR model
l with 10s context-length

l Baseline WPE was used

l Other dereverberation and beamforming was experimented

Model: Res-cnn-tdnnf-self-attention
Baseline GSS, wpe and bf 49.67

15s context length GSS 49.64

CDR + baseline Gss 51.19

Baseline Gss +  alignment 48.46

15s context length Gss + alignment 48.86



2. Systems  for Track1(RankA)
2.4 Decode
Ø Model fusion

• Minimum Bayesian Risk(MBR) Lattice Combine 

CNN-TDNNF-
ATT

Specaug-CNN-
TDNNF            

CNN-pFSMN

CNN-TDNNF-
ATT

fuse Text



3. Systems  for Track1(RankB)
3.1  Language model rescore

HCLG.fst
lattice

RNNLM

n-best
n-best 
rescore



3. Systems  for Track1(RankB)
3.1 End-to-End multi-channel  ASR

Ø model structure Ø Training process

worn data E2E ASR

worn data
array data Dereverberation beamforming

MSE SI-SNR

worn data
array data

E2E ASR

Dereverberation beamforming



4. Systems  for Track2

SAD

Sliding
Windows

Embedding
Extraction

AHC

Test Data

Segmentation

Clustering

VB
Resegmentation

Results

SAD Model

ASV Model

Ø system structure

Ø ASV Model: F-TDNN

Ø Acoustic features:40-dimensional Fbank > 
40-dimensional MFCC> 23-dimensional 
MFCC

Ø Clustering Algorithms: AHC >spectral 
clustering 



5. Results

End-to-End

Hybrid systems



3. Conclusions
Ø Using the frame-level alignment provided by ASR as the label of GSS can improve the performance of GSS.

Ø The chain model without subsampling provides better alignments.

Ø Removal of high WER speech during training can improve model performance.

Ø Different decision tree leaves can bring different performance to the model.

Ø SpecAugment is a kind of effective data augment method.

Ø Model fusion can improve recognition performance.

Ø Language model rescore is an effective post-processing method.

Ø End-to-end speech recognition in more difficult settings like reverberant, noisy, and far-field conditions, still 
lags behind. 



Thank You!

Any Questions?


