The CW-XMU Systems For CHiME-6 Challenge

Member: Xuerui Yang, Yongyu Gao, Shi Qiu, Song Li, Qingyang Hong, Xuesong Liu, Lin Li, Dexin Liao, Hao Lu, Feng Tong, Qiuhan Guo, Huixiang Huang, Jiwei Li

Presented by: Song Li

CloudWalk Technology Co., Ltd., Shanghai, China
{yangxuerui, gaoyongyu, qiushi}@cloudwalk.cn

Xiamen University, Xiamen, China
{lilin, qyhong}@xmu.edu.cn
Outline

• Systems Overview
• Systems for Track1(RankA)
• Systems for Track1(RankB)
• Systems for Track2
• Results
• Conclusions
1. Systems Overview

Track1 (Rank A)
1. Front-end speech enhancement
2. Acoustic model
3. Alignment and Strict cleanup
4. Chain-model tree leaves
5. Model fusion

Track1 (Rank B)
1. Language model rescore
2. End-to-End Model

Track2
1. Acoustic features
2. Acoustic model
3. Clustering algorithms
4. Variational Bayesian refinement
2. Systems for Track1(RankA)

- System is consist of Front-end, Gmm-Hmm and NN components
2. Systems for Track1(RankA)

2.1 Speech enhancement

- **Weighted Prediction Error (WPE):** Using nara_wpe tool and baseline Wpe configuration for derverberation
- **Guided Source Separation (GSS):** Baseline Gss with well-trained ASR model alignment
- **Beamforming:** Beamformit, Cgmm-MVDR
- **Half-sum:** Average the left and right channels of worn data
2. Systems for Track1(RankA)

2.2 Data Augmentation

- Worn Data
 1. speed and volume perturbation
 2. estimated noise injection
 3. simulated RIR: The RIR was generated according to the training data floorplan’s configurations.

- Array Data: 24 and 12 microphones GSS with various context length

- During training: SpecAugment
2. Systems for Track1(RankA)

2.3 GMM-HMM Training

- Strict cleanup: remove parts of speech, which has high WER
- Floorplan RIRs augmentation;
- Extract noise from CHiME-6 training data
2. Systems for Track1(RankA)

- 2.3 Chain Acoustic Model

Acoustic Model

1. Res-cnn-tdnnf-self-attention
2. Res-cnn-fsnn
3. Spec-aug-cnn-tdnnf
4. Multi-cnn-tdnnf

Nnet training process
2. Systems for Track1 (RankA)

2.3 Chain Model Training

- Neural-Network Alignment
- Chain-model tree leaves
- Training criterion
 - LF-MMI;
 - LF-bMMI;

Diagram:
- GMM-HMM
- Alignment
- Chain without subsampling
- Alignment
- Chain
- 5000
- Tree leaves
2. Systems for Track1(RankA)

2.4 Decode

- **Guided source separation**
 - Alignment according to well-trained ASR model
 - with 10s context-length
 - Baseline WPE was used
 - Other dereverberation and beamforming was experimented

<table>
<thead>
<tr>
<th>Model: Res-cnn-tdnnf-self-attention</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline GSS, wpe and bf</td>
<td>49.67</td>
</tr>
<tr>
<td>15s context length GSS</td>
<td>49.64</td>
</tr>
<tr>
<td>CDR + baseline Gss</td>
<td>51.19</td>
</tr>
<tr>
<td>Baseline Gss + alignment</td>
<td>48.46</td>
</tr>
<tr>
<td>15s context length Gss + alignment</td>
<td>48.86</td>
</tr>
</tbody>
</table>
2. Systems for Track1(RankA)

2.4 Decode

- Model fusion

- Minimum Bayesian Risk(MBR) Lattice Combine
3. Systems for Track1(RankB)

3.1 Language model rescore
3. Systems for Track1(RankB)

3.1 End-to-End multi-channel ASR

- model structure

![Diagram]

- Training process
 - worn data
 - worn data array data

- E2E ASR
- Dereverberation
- Beamforming

- MSE
- SI-SNR
4. Systems for Track2

- **System structure**
 - Test Data
 - SAD
 - Sliding Windows
 - Embedding Extraction
 - AHC
 - VB Resegmentation

- **ASV Model**: F-TDNN
- **Acoustic features**: 40-dimensional Fbank > 40-dimensional MFCC > 23-dimensional MFCC
- **Clustering Algorithms**: AHC > spectral clustering
5. Results

<table>
<thead>
<tr>
<th>Track</th>
<th>Rank</th>
<th>Dev (WER %)</th>
<th>Eval (WER %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>41.65</td>
<td>40.24</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>40.25</td>
<td>39.62</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>56.9</td>
<td>50.6</td>
</tr>
</tbody>
</table>

Table 1: Track 1 results

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Development Set</th>
<th>Evaluation Set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DER% JER% WER%</td>
<td>DER% JER% WER%</td>
</tr>
<tr>
<td>Category A</td>
<td>57.72 61.85 77.52</td>
<td>65.36 67.32 72.52</td>
</tr>
</tbody>
</table>

Table B: Track 2 category A results
3. Conclusions

- Using the frame-level alignment provided by ASR as the label of GSS can improve the performance of GSS.
- The chain model without subsampling provides better alignments.
- Removal of high WER speech during training can improve model performance.
- Different decision tree leaves can bring different performance to the model.
- SpecAugment is a kind of effective data augment method.
- Model fusion can improve recognition performance.
- Language model rescore is an effective post-processing method.
- End-to-end speech recognition in more difficult settings like reverberant, noisy, and far-field conditions, still lags behind.
Thank You!

Any Questions?