

The CW-XMU Systems For CHiME-6 Challenge

Member: Xuerui Yang, Yongyu Gao, Shi Qiu, Song Li, Qingyang Hong, Xuesong Liu, Lin Li, Dexin Liao, Hao Lu, Feng Tong, Qiuhan Guo, Huixiang Huang, Jiwei Li

Presented by: Song Li

CloudWalk Technology Co., Ltd., Shanghai, China {yangxuerui, gaoyongyu, qiushi}@cloudwalk.cn Xiamen University, Xiamen, China {lilin, qyhong}@xmu.edu.cn

Outline

- Systems Overview
- Systems for Track1(RankA)
- Systems for Track1(RankB)
- Systems for Track2
- Results
- Conclusions

Track1(RankA)

Track2

3. Alignment and Strict cleanup

1. Front-end speech enhancement

- 4. Chain-model tree leaves
- 5. Model fusion

2. Acoustic model

- 1. Acoustic features
- 2. Acoustic model
- 3. Clustering algorithms
- 4. Variational Bayesian refinement

1. Language model rescore Track1(RankB) —

2. End-to-End Model

System is consist of Front-end, Gmm-Hmm
 and NN components

2.1 Speech enhancement

- Weighted Predcition Error(WPE): Using nara_wpe tool and baseline Wpe configuration for derverberation
- Guided Source Separation (GSS): Baseline Gss with well-trained ASR model alignment
- Beamforming: Beamformit, Cgmm-MVDR
- ◆ Half-sum: Average the left and right channels of worn data

2.2 Data Augmentation

1. speed and volumn perturbation

➢ Worn Data → 2. estimated noise injection

3. simulated RIR: The RIR was generated according to the training data floorplan's configurations.

- Array Data: 24 and 12 micorphones GSS with various context length
- During training: SpecAugment

2.3 GMM-HMM Training

- Strict cleanup : remove parts of speech, which has high WER
- Floorplan RIRs augmentation;
- Extract noise from CHiME-6 training data

➢ 2.3 Chain Acoustic Model

Acoustic Model
Acoustic Model
1.Res-cnn-tdnnf-self-attention
2.Res-cnn-fsmn
3.Spec-aug-cnn-tdnnf
4.Multi-cnn-tdnnf

Nnet training process

2.3 Chain Model Training

Neural-Network Alignment

Chain-model tree leaves

- Training criterion
 - LF-MMI;
 - LF-bMMI;

2.4 Decode

- Guided source separation
- Alignment according to well-trained ASR model
- with 10s context-length
- Baseline WPE was used
- Other dereverberation and beamforming was experimented

	Model: Res-cnn-tdnnf-self-attention			
	Baseline GSS, wpe and bf	49.67		
	15s context length GSS	49.64		
	CDR + baseline Gss	51.19		
	Baseline Gss + alignment	48.46		
	15s context length Gss + alignment	48.86		

2.4 Decode

➢ Model fusion

• Minimum Bayesian Risk(MBR) Lattice Combine

3.1 Language model rescore

3.1 End-to-End multi-channel ASR

> Training process

> ASV Model: F-TDNN

- Acoustic features:40-dimensional Fbank > 40-dimensional MFCC> 23-dimensional MFCC
- Clustering Algorithms: AHC >spectral clustering

5. Results

Tr	ack	Rank	Dev (WER %)	Eval (WER %)	
	1	А	41.65	40.24	Hybrid systems
	1	В	40.25	39.62	
	1	В	56.9	50.6	End-to-End
		Ta	ble 1: Track 1 resu	ults	

Baseline	Development Set		Evaluation Set					
Category A	DER% 57.72	JER% 61.85		DER% 65.36	JER% 67.32	WER% 72.52		
Table B: Track 2 category A results								

3. Conclusions

- ➤ Using the frame-level alignment provided by ASR as the label of GSS can improve the performance of GSS.
- > The chain model without subsampling provides better alignments.
- Removal of high WER speech during training can improve model performance.
- Different decision tree leaves can bring different performance to the model.
- SpecAugment is a kind of effective data augment method.
- ➢ Model fusion can improve recognition performance.
- ➤ Language model rescore is an effective post-processing method.
- End-to-end speech recognition in more difficult settings like reverberant, noisy, and far-field conditions, still lags behind.

Thank You!

Any Questions?