The 6th CHiME Speech Separation and Recognition Challenge

Shinji Watanabe, Johns Hopkins University
Michael Mandel, The City University of New York, USA
Jon Barker, University of Sheffield
Emmanuel Vincent, Inria

Supported by ISCA SIG RoSP
Overview

- Background - From CHiME-1 to CHiME-6
- CHiME-6 data and task
- CHiME-6 baseline systems
- CHiME-6 submissions and results
CHiME tick-tock model

Background - From CHiME-1 to CHiME-6

2011 2013 2015 2016 2018

CHiME-1 data
Noisy Living Room

CHiME-3 data
Public Space

CHiME-5 data
Dinner Party

Tick

CHiME-1

CHiME-3

CHiME-5

Tock

CHiME-2

CHiME-4
CHiME-1, Interspeech 2011

- 50 hours of audio recorded in a family home via a binaural manikin
- Small vocabulary Grid corpus speech artificially added at distance of 2 m
- Range of SNRs -6 to 9 dB
- 13 submissions; best system (NTT) approached human performance
CHiME-2, ICASSP 2013

- Same noise backgrounds and set up as CHiME-1
- Difficulty extended in two directions:
 - Track 1 - CHiME-1 + simulated speaker movement
 - Track 2 - CHiME-1 + larger vocab (WSJ)
- Best Track 1 system matches human scores for 0 to 6 dB
- Best Track 2 halved baseline WERs but WERs still much higher than clean WSJ
CHiME-3, ASRU 2015

- Jumped to the real data
- 6 channel tablet recording device (~50cm between source and mic)
- WSJ speech recorded live in noisy public environments
 - cafe, bus, street, pedestrian
- Baseline system performance 33% WER
- Best system (NTT) reduced WER to 5.8%
CHiME-4, Interspeech 2016

- Rerun of CHiME-3
- Additional tracks for 2 channel and 1 channel processing
- 6 Channel WER reduced from 5.8% down to 2.2% (USTC-iFlyTek)
- 1 Channel WER 9.2% (USTC-iFlyTek)

Given this result, we moved to the next more realistic challenge
CHiME-5, Interspeech 2018

- Dinner party scenario
- Multiple microphone arrays
 - Binaural mics for participants
 - 6 Kinect devices located on multiple rooms
- Two tracks (single array vs. multiple array)

- Kaldi Baseline: 73.3%
- Best system (USTC-iFlyTek): 46.1%
CHiME tick-tock model

Background - From CHiME-1 to CHiME-6

2011: CHiME-1 data
Noisy Living Room

2013: CHiME-3 data
Public Space

2015: CHiME-5 data
Dinner Party

2016: CHiME-2
CHiME-4

2018: CHiME-6

2020: CHiME-5

Tick

Tock
Overview

- Background - From CHiME-1 to CHiME-6
- CHiME-6 data and task
- CHiME-6 baseline systems
- CHiME-6 submissions and results
Revisiting the CHiME-5 `dinner party' scenario

- Recordings in people's actual homes
- Parties of 4 - typically, two hosts and two guests
- All participants are well known to each other
- Collection of 20 parties each lasting 2 to 3 hours
- Each party has three separate stages each of at least 30 minutes:
 - Kitchen phase - dinner preparation
 - Dining room phase - eating
 - Sitting room phase - post-dinner socialising
CHiME-6 examples
The CHiME-6 recording setup

Data has been captured with 32 audio channels and 6 video channels

- **Participants’ microphones**
 - Binaural in-ear microphones recorded onto stereo digital recorders
 - Primarily for transcription but also uniquely interesting data
 - Channels: 4 x 2

- **Distant microphones**
 - Six separate Microsoft Kinect devices
 - Two Kinects per living area (kitchen, dining, sitting)
 - Arranged so that video captures most of the living space
 - Channel: 6 x 4 audio and 6 video
Example recording setups

S04

S07

S12

S23

S04: Session ID: S04
August 12, 2017 18:33 PST

S07: Session ID: S07
August 13, 2017 12:50 PST

S12: Session ID: S12
August 27, 2017 12:07 PST

S23: Session ID: S23
September 22, 2017 14:53 PST
CHiME-6 data overview

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Parties</th>
<th>Speakers</th>
<th>Hours</th>
<th>Utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>16</td>
<td>32</td>
<td>40:33</td>
<td>79,980</td>
</tr>
<tr>
<td>Dev</td>
<td>2</td>
<td>8</td>
<td>4:27</td>
<td>7,440</td>
</tr>
<tr>
<td>Eval</td>
<td>2</td>
<td>8</td>
<td>5:12</td>
<td>11,208</td>
</tr>
</tbody>
</table>

The audio data

- All audio data are distributed as 16 kHz WAV files
- Each session consists of
 - recordings made by the binaural microphones worn by each participant (4 participants per session),
 - 6 microphone arrays with 4 microphones each.
- Total number of microphones per session is 32 (2 x 4 + 4 x 6).
- Total data size: 120 GB
CHiME-6 transcriptions

Transcriptions are provided in JSON format. Separate file per session, <session ID>.json. The JSON file includes the following pieces of information for each utterance:

- Session ID ("session id")
- Location ("kitchen", "dining", or "living")
- Speaker ID ("speaker")
- Transcription ("words")
- Start time ("start time")
- End time ("end time")
Desynchronisation in CHiME-5 data due to audio **frame dropping** and **clockdrift**.

- **Frame dropping** (Kinect signals only)
 - Detected by matching to an uncorrupted 1-channel audio signal captured by the video software.
 - Corrected by inserting 0’s into signal
 - Typically 1-2 seconds per session.

- **Clockdrift**:
 - Fix a reference channel. Compute lag at 10 second intervals throughout the session and perform linear fit.
 - Signal speed can then be corrected by sox resampling.
 - Typically ~100 ms per session.
The challenge has two tracks:

- **Track 1**: oracle segmentation (equivalent to CHiME-5 multiple array track)
- **Track 2**: no segmentation

Two separate rankings have been produced:

- Ranking A: conventional acoustic model + official language model (‘acoustic robustness’)
- Ranking B: all other systems
CHiME-6 track 1

![Audio waveform and diagram](image)

Enhancement
ASR

"end_time": "00:01:15.10",
"start_time": "00:01:12.45",
"words": "Hmm. And there's spoon",
"speaker": "P02",

Shinji Watanabe (JHU)
CHiME-6 track 2
CHiME-6 track 2

Enhancement

ASR

Speech activity detection (SAD)

Speaker embedding

Diarization

"end_time": "00:01:15.10",
"start_time": "00:01:12.45",
"words": "Hmm. And there's spoon",
"speaker": "P02",
CHiME-6 tracks

The challenge has two tracks:

- **Track 1**: oracle segmentation (equivalent to CHiME-5 multiple array track)
- **Track 2**: no segmentation

Two separate rankings have been produced:

- Ranking A: conventional acoustic model + official language model ("acoustic robustness")
- Ranking B: all other systems
Overview

- Background - From CHiME-1 to CHiME-6
- CHiME-6 data and task
- CHiME-6 baseline systems
- CHiME-6 submissions and results
Policies of the baseline construction

Track 1

- **Strong, reproducible** (all open source) baseline, but maintain the simplicity

Track 2

- Integrates speech activity detection (SAD), speaker embedding, and speaker diarization modules in addition to the track 1 system
- **All-in-one recipe** including training and inference
- This is the first baseline that integrates all multi speaker speech processing in this real scenario

Many thanks to

Ashish Arora, Xuankai Chang, Sanjeev Khudanpur, Vimal Manohar, Daniel Povey, Desh Raj, David Snyder, Aswin Shanmugam Subramanian, Jan Trmal, Bar Ben Yair, Christoph Boeddeker, Zhaoheng Ni, Yusuke Fujita, Shota Horiguchi, Naoyuki Kanda, Takuya Yoshioka, Neville Ryant
System overview

Track 1

CHiME-6 baseline systems

All of them are implemented within a Kaldi recipe
Track 1: Speech enhancement

We used the following open source implementations

- Dereverberation:
 - Nara-WPE: different implementations of "Weighted Prediction Error" for speech dereverberation

- Beamforming
 - Guided Source Separation (GSS) for multiple arrays
 - Uses the context speaker information to extract the target speech from a mixture
 - Reduces the computational cost while keeping the performance (outer mics, reduce #iterations, etc.)
 - BeamformIt
 - We still keep this enhancement option to perform simple weighted delay-and-sum beamforming to the reference array
Track 1: Speech recognition

Kaldi speech recognition toolkit

- Acoustic model: trained with Kinect and worn microphones and augmented data (CHiME noises and simulated RIRs)
 - GMM \rightarrow TDNN-F
- Language model: 3-gram LM trained with the CHiME-6 transcriptions
- Data cleaning
- Chain model (lattice-free MMI training)
 - Factorized time delay neural network (TDNN-F)
 - I-vector
- Two stage decoding (refine i-vector in the first pass decoding)
Track 1: Baseline performance

<table>
<thead>
<tr>
<th></th>
<th>Dev. WER</th>
<th>Eval. WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHiME-5 baseline</td>
<td>81.1%</td>
<td>73.3%</td>
</tr>
<tr>
<td>CHiME-5 top system (USTC-iFlytek)</td>
<td>45.6%</td>
<td>46.6%</td>
</tr>
<tr>
<td>CHiME-6 baseline</td>
<td>51.8%</td>
<td>51.3%</td>
</tr>
</tbody>
</table>

- Approaching the CHiME-5 top performance with a simple system!
Track 2: Speech enhancement

We used the following open source implementations

- **Dereverberation:**
 - **Nara-WPE:** different implementations of "Weighted Prediction Error" for speech dereverberation

- **Beamforming**
 - **BeamformIt**
 - We still keep this enhancement option to perform simple weighted delay-and-sum beamforming to the reference array

- Note that we did not include GSS due to the risk of degradation in GSS performance using estimated diarization information
Track 2: Speaker segmentation (RTTM) refinement

- CHiME-6 utterance boundaries sometimes included long pauses within a sentence, bad for diarization
- We created a new reference RTTM by force aligning the transcripts with the binaural recordings using the HMM-GMM system
- Utterances were then sequences of words separated by less than 300ms silence or noise
- Raised at the CHiME challenge forum
Track 2: Speech activity detection

Kaldi speech recognition toolkit

- Generate speech activity labels from the HMM-GMM system
- 5-layer TDNN with statistics pooling
- **Only use the U06 array** for simplicity

<table>
<thead>
<tr>
<th></th>
<th>Dev</th>
<th>Eval.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Missed speech</td>
<td>False alarm</td>
</tr>
<tr>
<td>Original RTTM</td>
<td>2.5%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Force-aligned RTTM</td>
<td>1.9%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>
Track 2: Speaker diarization

Kaldi speech recognition toolkit

- **x-vector** neural diarization model is trained with VoxCeleb
- Probabilistic linear discriminant analysis (PLDA) model [44] is trained on CHiME-6
- Agglomerative hierarchical clustering (AHC) is performed
- The number of speakers is given (=4)

<table>
<thead>
<tr>
<th></th>
<th>Dev.</th>
<th></th>
<th>Eval.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DER</td>
<td>JER</td>
<td>DER</td>
<td>JER</td>
</tr>
<tr>
<td>Original RTTM</td>
<td>61.6%</td>
<td>69.8%</td>
<td>62.0%</td>
<td>71.4%</td>
</tr>
<tr>
<td>Force-aligned RTTM</td>
<td>63.4%</td>
<td>70.8%</td>
<td>68.2%</td>
<td>72.5%</td>
</tr>
</tbody>
</table>
Track 2: Speech recognition

- Same as track 1
Track 2: Evaluation metrics

Speaker diarization
- diarization error rate (DER)
- Jaccard error rate (JER)
- Both are computed by using dscore (official DIHARD scoring tool)

Speech recognition
- Concatenated minimum-permutation word error rate (cpWER).
 a. Concatenate all utterances of each speaker for both reference and hypothesis files.
 b. Compute the WER between the reference and all possible speaker permutations of the hypothesis.
 c. Pick the lowest WER among them
- cpWER includes the diarization error and we used it as an official metric for our ranking
Track 2: Baseline performance

- CHiME-6 Track 1 and 2 baseline ASR results with BeamformIt-based and GSS-based speech enhancement.
- We used the same acoustic and language models for both tracks.

<table>
<thead>
<tr>
<th></th>
<th>Enhancement</th>
<th>Segmentation</th>
<th>Dev. WER</th>
<th>Eval. WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track 1</td>
<td>GSS</td>
<td>Oracle</td>
<td>51.8%</td>
<td>51.3%</td>
</tr>
<tr>
<td>Track 2</td>
<td>BeamformIt</td>
<td>Diarization</td>
<td>84.3% (cpWER)</td>
<td>77.9% (cpWER)</td>
</tr>
</tbody>
</table>

- Significant degradation due to the diarization errors (Challenge!!!)
Overview

- Background - From CHiME-1 to CHiME-6
- CHiME-6 data and task
- CHiME-6 baseline systems
- CHiME-6 submissions and results
Submission statistics

- In total, **34 submissions by 13 papers**
 - CHiME-5: 35 submissions by 20 papers
 - Track 1-A: 11, Track 1-B: 9, Track 2-A: 9, Track 2-B: 5
- In total, 111 authors, 8.5 authors per paper
- Academia 10 vs. Industry 6
- Asia 9, Europe 4, North America 2

- We have several new participants (Welcome!)
Results: Track 1-A WER

Best CHiME-5 46.6%

31.0
Results: Track 1-B WER

Best CHiME-5 46.1%

30.5
Results: Track 1-B WER

The USTC-NELSLIP Systems for CHiME-6 Challenge

Jun Du¹, Yan-Hui Tu¹, Lei Sun¹, Li Chai¹, Xin Tang¹, Mao-Kui He¹, Feng Ma¹, Jia Pan¹, Jian-Qing Gao¹, Dan Liu¹, Chin-Hui Lee², Jing-Dong Chen³

¹University of Science and Technology of China, Hefei, Anhui, P. R. China
²Georgia Institute of Technology, Atlanta, Georgia, USA
³Northwestern Polytechnical University, Shanxi, P. R. China
Results: Track 2-A cpWER

- STC-innovations Ltd, ITMO University
- Johns Hopkins University
- University of Science and Technology of China (USTC)
- Paderborn University
- Brno University of Technology
- Xiamen University
- City University of New York
- Academia Sinica
- Baseline

44.5
Results: Track 2-B cpWER

- STC-innovations Ltd, ITMO University
- Johns Hopkins University
- University of Science and Technology of China (USTC)
- Paderborn University
- Brno University of Technology
- Baseline

42.7
Results: Track 2-B cpWER

The STC System for the CHiME-6 Challenge

Ivan Medennikov1,2, Maxim Korenevsky1, Tatiana Prisyach1, Yuri Khokhlov1, Mariya Korenevskaya1, Ivan Sorokin1, Tatiana Timofeeva1, Anton Mitrofanov1, Andrei Andrusenko1,2, Ivan Podluzhny1, Aleksandr Latpev1,2, Aleksei Romanenko1,2

1STC-innovations Ltd, 2ITMO University, Saint Petersburg, Russia
Technology summary

Track 1
- Speech enhancement: Guided source separation, speech separation, iterative method, full use of multiple arrays
- Data augmentation: mixing the enhanced signals
- Acoustic model: combine CNN

Track 2
- Target-Speaker Voice Activity Detection (TS-VAD) largely solve the overlap problems in speaker diarization!
ASR vs. diarization metrics

old DER vs. WER
Corr Coef = 0.78

new DER vs. WER
Corr Coef = 0.79

old JER vs. WER
Corr Coef = 0.75

new JER vs. WER
Corr Coef = 0.86
Conclusion
Conclusion

Take home message from Track 1:

- Top system ~30%
- Most systems outperformed the best 2018 system (reproducible)

Steadily improve the performance in this really challenging environments
Take home message from Track 2:

- Totally 8 research groups could build their systems
- The top system is filling out the gap comes from the oracle segmentation

We established a method to tackle multispeaker unsegmented recordings!
Thanks a lot!

We are publishing our baseline efforts in arXiv (https://arxiv.org/abs/2004.09249) and this workshop proceedings.
We welcome your input!

- Other (more challenging or less challenging but more organized) scenarios?
- More data?
- Multimodal (audio and video)?
- Multilingual?
- Dynamic environment (e.g., wearable or robot)?
- Simplified systems?
- Online vs. offline?
- Other tasks (keyword search)?

Questionnaires based on Google form
URL: https://forms.gle/jgXaxFEcqSN7dQau7
Now we should move on to the next stage

- Other (more challenging) scenarios?
- More data or more techniques to further establish the scenario?
- Multi-modal?
- Dynamic environment (e.g., robot)
- Online or off line?