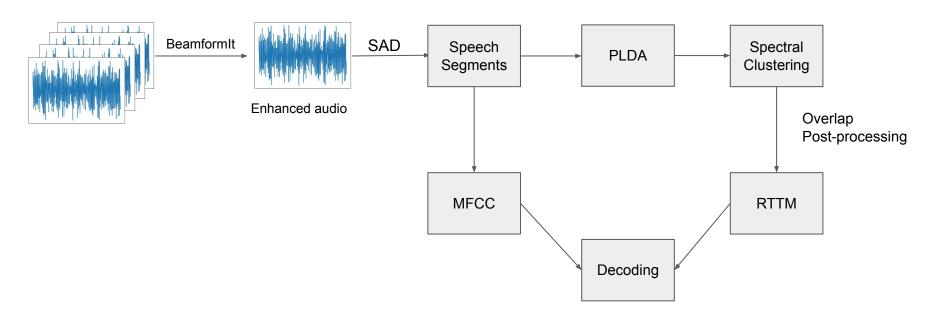


CUNY Speech Diarization System for the CHiME-6 Challenge

Zhaoheng Ni, Michael I Mandel


zni@gradcenter.cuny.edu

mim@sci.brooklyn.cuny.edu

City University of New York

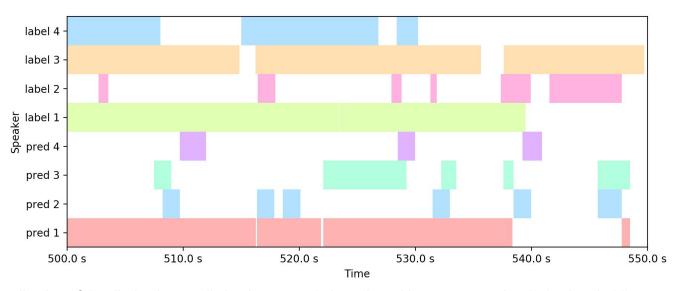
System Overview

Spectral Clustering

Given the similarity matrix S from PLDA.

$$L_{\text{norm}} = D^{-1} \times (D - S), D_i = \sum_{j=1}^{n} S_{ij}$$

- Compute eigenvalues and eigenvectors of Lnorm.
- Use the first 4 smallest eigenvalues and corresponding eigenvectors as the embedding matrix.
- Apply KMeans clustering algorithm on the matrix.



Overlap Post-processing

- Clustering-based methods assign each frame to only one speaker
- Label overlaps for the x-vectors
 - If more than ratio of duration has overlap, label the x-vector 1
 - else label the x-vector 0
- Train a logistic regression classifier to classify overlaps
- Assign the x-vector to two closest speakers in the spectral clustering

Diarization Visualization

Visualization of the diarization prediction by spectral clustering with post processing (0.67 threshold). The upper 4 rows represent the 4 speakers in the original RTTM reference provided by the challenge, the lower 4 rows represent the 4 speakers in our diarization result.

DER Results: Dev

Reference	CHiME-5		Forced alignment	
Method	DER	JER	DER	JER
Baseline	61.56	63.42	69.75	70.83
SPC	57.15	61.77	57.55	61.18
SPC + PP (0.5)	54.60	52.53	78.83	57.79
SPC + PP(0.67)	51.67	54.45	63.81	57.20

SPC: spectral clustering

PP: post-processing

0.5 ratio to label overlap for x-vectors

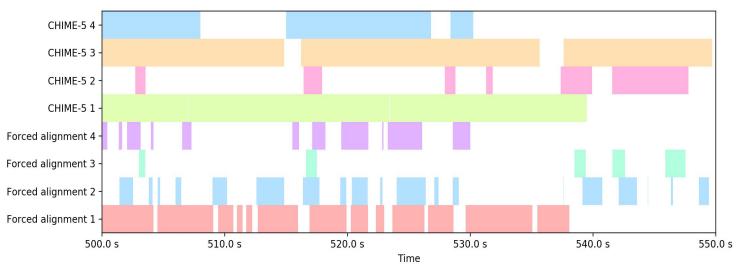
DER Results: Eval

Reference	CHiME-5		Forced alignment	
Method	DER	JER	DER	JER
Baseline	61.96	71.40	68.20	72.54
SPC	60.64	65.59	66.29	65.48
SPC + PP(0.5)	70.18	59.72	96.71	63.60
SPC + PP (0.67)	61.51	60.51	77.75	62.75

SPC: spectral clustering

PP: post-processing

0.5 ratio to label overlap for x-vectors



WER Results

Method	Dev	Eval
Baseline	84.25	77.94
SPC	76.48	73.31
SPC + PP (0.5)	77.79	74.49
SPC + PP (0.67)	76.04	72.74
CHiME-5 reference	67.46	61.08
Forced align. reference	63.33	59.58

RTTM References Visualization

Visualization of the two RTTM references provided by the challenge. The upper 4 and lower 4 rows are from the original CHiME-5 reference and the binaural forced alignment reference, respectively.

References

Anguera, Xavier. "Beamformit, the fast and robust acoustic beamformer." (2006).

Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007): 395-416.

Ning, Huazhong, et al. "A spectral clustering approach to speaker diarization." *Ninth International Conference on Spoken Language Processing*. 2006.

Shum, Stephen, Najim Dehak, and James Glass. "On the use of spectral and iterative methods for speaker diarization." *Thirteenth Annual Conference of the International Speech Communication Association*. 2012.

Wang, Quan, et al. "Speaker diarization with lstm." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.

Lin, Qingjian, et al. "LSTM based similarity measurement with spectral clustering for speaker diarization." arXiv preprint arXiv:1907.10393 (2019).

Thank you!