The 6th International Workshop on Speech Processing in Everyday Environments

The STC System for the CHiME-6 Challenge

Ivan Medennikov^{1,2}, Maxim Korenevsky¹, Tatiana Prisyach¹, Yuri Khokhlov¹, Mariya Korenevskaya¹, Ivan Sorokin¹, Tatiana Timofeeva¹, Anton Mitrofanov¹, Andrei Andrusenko^{1,2}, Ivan Podluzhny¹, Aleksandr Laptev^{1,2}, Aleksei Romanenko^{1,2}

¹STC-innovations Ltd, ²ITMO University, Saint Petersburg, Russia {medennikov, korenevsky, knyazeva, khokhlov, korenevskaya, sorokin, timofeeva, mitrofanov-aa, andrusenko, podluzhnyi, laptev, romanenko}@speechpro.com

Track 2: Diarization and ASR

- Conversational speech
- Noisy real-world environment
- Far-field conditions
- Large amount of overlapping speech

3 Track 2: Diarization and ASR

- Array synchronization to generate the new CHiME-6 audio data from the CHiME-5 data
- Data augmentation: room simulation, speed and volume perturbation
- Data cleanup
- LF-MMI TDNN-F with i-vectors based speaker adaptation
- Speech enhancement: Weighted Prediction Error (WPE) + Guided Source Separation (GSS) + MVDR beamforming
- 2-stage decoding with i-vectors re-estimation

	Dev WER%	Eval WER%
CHiME-6 baseline	51.76	51.29
CHiME-5 top system (USTC-iFlytek)	45.60	46.60

Front-end

- WPE dereverberation
- GSS
 - soft-activities obtained from TS-VAD
- Minimum Variance Distortionless Response (MVDR) beamforming
 - diagonal regularization of noise spatial covariance matrices
 - excluding one-third of all microphones with the worst Envelope Variance¹ scores from beamforming

	Dev WER%
baseline TDNN-F	51.8
training on GSS-enhanced data	47.6
improved GSS (12 $ ightarrow$ 24 mic, 10 $ ightarrow$ 15 s context, 5 $ ightarrow$ 20 iterations)	46.2
+ MVDR: regularization	46.0
+ MVDR: excluding microphones by Envelope Variance	45.8
+ hard activity from ASR	43.5
+ soft activity from ASR	43.3
+ soft activity from TS-VAD	43.0

 $^{^1\}text{M}.$ Wolf, C. Nadeu "Channel selection measures for multi-microphone speech recognition" in Speech Communication, 2014, v. 57, pp. 170–180.

Acoustic model	Dev WER%
TDNN-F on MFCC	43.0
TDNN-F on fbank/gtf	42.5
+stats	41.9
+SpecAugment	41.0
CNN-TDNN-F+stats+SpecAugment	39.6
+multi-stride ² /multi-stream self-attention ³	37.7
+SMBR	36.8

²K. Han, J. Huang, Y. Tang, X. He, and B. Zhou, "Multi-stride self-attention for speech recognition," in INTERSPEECH 2019, pp. 2788–2792.

³K. Han, R. Prieto, and T. Ma, "State-of-the-art speech recognition using multi-stream self-attention with dilated 1d convolutions," in ASRU 2019, pp. 54–61.

- 3-layers LSTM with 2048 units per layer
- Regularization techniques from ASGD Weight Dropout (AWD) LSTM⁴ except Averaged Stochastic Gradient Descent (ASGD)
- Trained on Byte Pair Encoding (BPE) tokens
 - 3k BPE best single model
 - 1k, 3k, 5k, 8k BPE were trained for using in ensemble

⁴S. Merity, N. Keskar, and R. Socher, "Regularizing and Optimizing LSTM Language Models", in International Conference on Learning Representations, 2017

	Dev WER%	Eval WER%
Kaldi baseline	51.76	51.29
Best single AM	36.82	38.59
Fusion (16 systems)	33.53	35.79
Lattice rescoring + Fusion	30.96	33.91

• Speech recognition in real-world conditions is a challenging task

- Data augmentation techniques are quite effective for this type of data
- Separation of overlapping speech is extremely important
- Using soft-activities from TS-VAD to initialize GSS instead of hard-activities improves system performance
- Convolutional and multi-stream/multi-stride self-attention layers in AM provide a significant WER improvement

- Speech recognition in real-world conditions is a challenging task
- Data augmentation techniques are quite effective for this type of data
- Separation of overlapping speech is extremely important
- Using soft-activities from TS-VAD to initialize GSS instead of hard-activities improves system performance
- Convolutional and multi-stream/multi-stride self-attention layers in AM provide a significant WER improvement

- Speech recognition in real-world conditions is a challenging task
- Data augmentation techniques are quite effective for this type of data
- Separation of overlapping speech is extremely important
- Using soft-activities from TS-VAD to initialize GSS instead of hard-activities improves system performance
- Convolutional and multi-stream/multi-stride self-attention layers in AM provide a significant WER improvement

- Speech recognition in real-world conditions is a challenging task
- Data augmentation techniques are quite effective for this type of data
- Separation of overlapping speech is extremely important
- Using soft-activities from TS-VAD to initialize GSS instead of hard-activities improves system performance
- Convolutional and multi-stream/multi-stride self-attention layers in AM provide a significant WER improvement

- Speech recognition in real-world conditions is a challenging task
- Data augmentation techniques are quite effective for this type of data
- Separation of overlapping speech is extremely important
- Using soft-activities from TS-VAD to initialize GSS instead of hard-activities improves system performance
- Convolutional and multi-stream/multi-stride self-attention layers in AM provide a significant WER improvement

- ASR from Track 1
- SAD training (TDNN+LSTM)
- Diarization training (Kaldi x-vector extractor (VoxCeleb) + PLDA scores + Agglomerative hierarchical clustering)
- Decoding and scoring

	Dev WER%	Eval WER%
Kaldi baseline	84.25	77.94

Baseline diarization improvements

 $^5\text{A}.$ Gusev et al., "Deep speaker embeddings for far-field speaker recognition on short utterances," arXiv preprint arXiv:2002.06033

⁶T. Park et al., "Auto-tuning spectral clustering for speaker diarization using normalized maximum eigengap," IEEE Signal Processing Letters, vol. 27, pp. 381–385, Dec 2019

- The main problem is a large amount of overlapping speech
- Lowest achievable DER on the development set for clustering-based systems is 25.6% due to Speaker Miss Errors
- Approaches directly detecting each speaker (like EEND⁷) can handle this
- Our TS-VAD approach is inspired by EEND, TS-ASR⁸ and Personal VAD⁹

⁷Y. Fujita, N. Kanda, S. Horiguchi, Y. Xue, K. Nagamatsu, and S. Watanabe, "End-to-end neural speaker diarization with self-attention", in 2019 IEEE ASRU, 2019, pp. 296-303

⁸N. Kanda, S. Horiguchi, Y. Fujita, Y.Xue, K. Nagamatsu, and S. Watanabe, "Simultaneous speech recognition and speaker diarization for monaural dialogue recordings with target-speaker acoustic model", in 2019 IEEE ASRU, 2019, pp.31-38

⁹S. Ding, Q. Wang, S.-Y. Chang, L. Wan, and I. Moreno, "Personal VAD: Speaker-conditioned voice activity detection", ArXiv:1908.04284, 2019

General info

- Predicts presence/absence probabilities of each speaker in the current frame
- Takes MFCC + i-vectors for each speaker as inputs
- Requires an accurate initialization of i-vectors

Training details

- Kaldi ASR Toolkit
- i-vectors extractor training following the baseline recipe
- CHiME-6(worn+simu+u400k) + VoxCeleb(800h) data for Track 2
- only CHiME-6 data (0.5% DER worse) for Track 1

Single-channel target-speaker VAD scheme (TS-VAD-1C)

- \bullet WPE dereverberation reduces DER by 1%
- Averaging of per-channel probabilities provides 2% DER improvement
- Joint processing of channels is important
- We introduce a multi-channel TS-VAD model (TS-VAD-MC)
 - takes a set of TS-VAD-1C hidden representations from 10 random Kinect channels as input
 - combines them by a simple attention mechanism

Multi-channel target-speaker VAD scheme (TS-VAD-MC)

Diarization system overview

	DEV		EV	ΆL
	DER	JER	DER	JER
x-vectors + AHC (baseline)	63.42	70.83	68.20	72.54
WRN x-vectors + AHC	53.45	56.76	63.79	62.02
WRN x-vectors + SC	47.29	49.03	60.10	57.99
+ TS-VAD-1C (it1)	39.19	40.87	45.01	47.03
+ TS-VAD-1C (it2)	35.80	37.38	39.80	41.79
+ TS-VAD-MC	34.59	36.73	37.57	40.51
Fusion (best DER)	32.84	36.31	36.02	40.10
Fusion (best WER)	37.30	36.11	41.40	39.73

Diarization errors and their influence on GSS performance

data	diarization	Spk Miss	False Alarm	Spk Error	DER	WER*
dev	WRN xvec + SC	27.24	9.83	10.22	47.29	70.47
	best DER	15.85	8.85	8.13	32.84	54.70
	best WER	9.02	20.71	7.57	37.30	53.33
eval	WRN xvec + SC	25.58	16.09	18.43	60.10	72.86
	best DER	16.31	10.15	9.56	36.02	55.56
	best WER	9.32	23.27	8.81	41.40	54.85

GSS is able to suppress False Alarm errors!

* 12-microphone GSS enhancement, baseline TDNN-F

	Dev WER%	Eval WER%
Kaldi baseline for Track 1	51.76	51.29
Kaldi baseline for Track 2	84.25	77.94
Best single AM	44.89	47.67
Fusion	41.56	44.49
Lattice rescoring + Fusion	39.56	42.67
Our best Track 1 result	30.96	33.91

- Multi-microphone multi-speaker conversational speech recognition for unsegmented recordings is an extremely challenging problem
- TS-VAD approach directly solves the diarization problem and allows performing GSS
- Iterative re-estimation of i-vectors significantly reduces DER
- Best ASR results are obtained when using diarization with larger False Alarm rate instead of the best DER diarization
- More details on TS-VAD approach in the upcoming INTERSPEECH paper¹⁰

¹⁰I. Medennikov, M. Korenevsky, T. Prisyach, Y. Khokhlov, M. Korenevskaya, I. Sorokin, T. Timofeeva, A. Mitrofanov, A. Andrusenko, I. Podluzhny, A. Laptev, A. Romanenko. "Target-Speaker Voice Activity Detection: a Novel Approach for Multi-Speaker Diarization in a Dinner Party Scenario", submitted to INTERSPEECH 2020

- Multi-microphone multi-speaker conversational speech recognition for unsegmented recordings is an extremely challenging problem
- TS-VAD approach directly solves the diarization problem and allows performing GSS
- Iterative re-estimation of i-vectors significantly reduces DER
- Best ASR results are obtained when using diarization with larger False Alarm rate instead of the best DER diarization
- More details on TS-VAD approach in the upcoming INTERSPEECH paper¹⁰

¹⁰I. Medennikov, M. Korenevsky, T. Prisyach, Y. Khokhlov, M. Korenevskaya, I. Sorokin, T. Timofeeva, A. Mitrofanov, A. Andrusenko, I. Podluzhny, A. Laptev, A. Romanenko. "Target-Speaker Voice Activity Detection: a Novel Approach for Multi-Speaker Diarization in a Dinner Party Scenario", submitted to INTERSPEECH 2020

- Multi-microphone multi-speaker conversational speech recognition for unsegmented recordings is an extremely challenging problem
- TS-VAD approach directly solves the diarization problem and allows performing GSS
- Iterative re-estimation of i-vectors significantly reduces DER
- Best ASR results are obtained when using diarization with larger False Alarm rate instead of the best DER diarization
- More details on TS-VAD approach in the upcoming INTERSPEECH paper¹⁰

¹⁰I. Medennikov, M. Korenevsky, T. Prisyach, Y. Khokhlov, M. Korenevskaya, I. Sorokin, T. Timofeeva, A. Mitrofanov, A. Andrusenko, I. Podluzhny, A. Laptev, A. Romanenko. "Target-Speaker Voice Activity Detection: a Novel Approach for Multi-Speaker Diarization in a Dinner Party Scenario", submitted to INTERSPEECH 2020

- Multi-microphone multi-speaker conversational speech recognition for unsegmented recordings is an extremely challenging problem
- TS-VAD approach directly solves the diarization problem and allows performing GSS
- Iterative re-estimation of i-vectors significantly reduces DER
- Best ASR results are obtained when using diarization with larger False Alarm rate instead of the best DER diarization

More details on TS-VAD approach in the upcoming INTERSPEECH paper¹⁰

¹⁰I. Medennikov, M. Korenevsky, T. Prisyach, Y. Khokhlov, M. Korenevskaya, I. Sorokin, T. Timofeeva, A. Mitrofanov, A. Andrusenko, I. Podluzhny, A. Laptev, A. Romanenko. "Target-Speaker Voice Activity Detection: a Novel Approach for Multi-Speaker Diarization in a Dinner Party Scenario", submitted to INTERSPEECH 2020

Ivan Medennikov et al.

- Multi-microphone multi-speaker conversational speech recognition for unsegmented recordings is an extremely challenging problem
- TS-VAD approach directly solves the diarization problem and allows performing GSS
- Iterative re-estimation of i-vectors significantly reduces DER
- Best ASR results are obtained when using diarization with larger False Alarm rate instead of the best DER diarization
- More details on TS-VAD approach in the upcoming INTERSPEECH paper¹⁰

¹⁰I. Medennikov, M. Korenevsky, T. Prisyach, Y. Khokhlov, M. Korenevskaya, I. Sorokin,
 T. Timofeeva, A. Mitrofanov, A. Andrusenko, I. Podluzhny, A. Laptev, A. Romanenko.
 "Target-Speaker Voice Activity Detection: a Novel Approach for Multi-Speaker Diarization in a Dinner Party Scenario", submitted to INTERSPEECH 2020

Ivan Medennikov et al.

Track 1 results

	Dev WER%	Eval WER%
Baseline	51.76	51.29
Ranking A	33.53	35.79
Ranking B	30.96	33.91

Track 2 results

		DEV			EVAL	
	DER	JER	WER	DER	JER	WER
Baseline	63.42	70.83	84.25	68.20	72.54	77.94
Ranking A Ranking B	37.30	36.11	41.56 39.56	41.40	39.73	44.49 42.67

THANK YOU!