The Academia Sinica Systems of Speech Recognition and Speaker Diarization for the CHiME-6 Challenge

Hung-Shin Lee, Yu-Huai Peng, <u>Pin-Tuan Huang</u>, Ying-Chun Tseng, Chia-Hua Wu, Yu Tsao, Hsin-Min Wang

Academia Sinica, Taiwan

Outline

- Track 1: multiple-array ASR
 - Our contributions
 - Results
- Track 2: multiple-array diarization+ASR
 - Our contributions
 - Results

Track 1: Our Contributions

- Compared with the baseline system, we
 - We applied WPE, GSS, and BF to all the Kinect data in the training phase
 - Alignment expansion from the Worn data to the Kinect data was used
 - Four other kinds acoustic models, including our proposed DcAE and FEAM, were used

Track 1: Results

Table 1: WERs (%) for Track 1 and Track 2 (Category A only).

	Track 1		Track 2		
Model	Dev	Eval	Dev	Eval	
Baseline	51.32	51.36	84.25	77.94	
TDNN-F RBiLSTM DcAE-B DcAE-U FEAM-U	50.12 52.43 50.12 49.86 53.47	49.36 50.26 49.68 49.63 52.70	75.89 76.90 75.90 75.78 78.70	73.68 73.39 73.66 73.54 76.20	
ROVER	47.28	46.82	74.36	71.56	

- Data augmentation
 - speed perturbation
 - volume perturbation
- 40-d MFCCs & 100-d i-vectors
- Five kinds of acoustic models
 - TDNN-F
 - RBiLSTM (1ch)
 - DcAE-B
 - DcAE-U
 - FEAM-U

Track 2: Our Contributions

- Compared with the baseline system, we
 - Combined all channels of the Kinect data with BeamformIt (BF)
 - Developed a new training scheme for speaker representations using Speaker Change information and CNN-based ResNet-34
 - Performed re-segmentation with VB diarization

Track 2: Results

Table 1: WERs (%) for Track 1 and Track 1	2 (Category A only).
---	----------------------

	Track 1		Track 2		
Model	Dev	Eval	Dev	Eval	
Baseline	51.32	51.36	84.25	77.94	
TDNN-F	50.12	49.36	75.89	73.68	
RBiLSTM	52.43	50.26	76.90	73.39	
DcAE-B	50.12	49.68	75.90	73.66	
DcAE-U	49.86	49.63	75.78	73.54	
FEAM-U	53.47	52.70	78.70	76.20	
ROVER	47.28	46.82	74.36	71.56	

Track 2: Results

Table 2: Results for Track 2. The acoustic models are the same.

	Dev			Eval		
Model	DER	JER	WER	DER	JER	WER
Baseline	63.42	70.83	84.25	68.20	72.54	77.94
Proposed	56.77	60.62	75.57	59.17	63.40	72.82

Track 2: Front-end Processing

- Our front-end data processing follows the baseline program, except that...
 - We used all channels in the Kinect data
 - (Only one specific Kinect was used in baseline)

Track 2: Speaker Modeling

Track 2: Speaker Modeling

Conclusions & Future Work

- In Track 1, we evaluated newly proposed acoustic models, namely DcAE and FEAM
 - DcAE outperforms TDNN-F
 - FEAM needs some modifications and fine tuning in the future
- In Track 2, our proposed speaker modeling method was proved useful for speaker diarization and downstream ASR