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Enable High-Accuracy ASR in Everyday Environments
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❑Single Modality -> Multi-Modality
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Speech Separation / Enhancement / Dereverberation

Mixture Signal at M Mics
Target speech + interfering speech + noise + reverberation

Dry Clean Target Speech 𝑠𝑑

𝑡
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𝑦(𝑚) = 𝑠𝑑 ∗ ℎ
(𝑚) + 𝑛(𝑚) = 𝑠(𝑚) + 𝑛(𝑚)

𝑌(𝑚) = 𝑆𝑑 ∙ 𝐻
(𝑚) + 𝑁(𝑚) = 𝑆(𝑚) + 𝑁(𝑚) 𝑆𝑑 or 𝑆𝑑 ∙ 𝐻

(𝑚)

𝑡

𝑡 𝑡

(Or Reverb Clean Target Speech  𝑠𝑑 ∗ ℎ
(𝑚))



Ideal Solution

Realtime and High Performing 

for both communication and back-end applications
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Popular Solution: Estimate and Apply a Mask/Gain

𝑆𝑡,𝑓 = 𝑴𝒂𝒔𝒌𝑡,𝑓 × 𝑌𝑡,𝑓
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Scalar =𝒇𝒕,𝒇(𝒀): One Mask 

per time-frequency bin
Reverb Clean Speech

(remove additive noise)
Mixture Signal

(2) Masks may be 
estimated with deep 

learning or signal 
processing techniques 

(1) Estimating masks 
generalize better than 
estimating spectrum 

directly

(3) Masks are often 
estimated by exploiting 
spatial, frequency, and 

history information



Popular Solution: Estimate and Apply a Mask/Gain

❑Explicitly estimate the masks

❖ Ideal Ratio Mask

❖Minimize 

❖ Recover reverb clean
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IRM∈ [𝟎, 𝟏]

ℒ1 = MSE( ෢IRM, IRM)

(3) Requires Independence assumption
(Poor esp. when SNR is low)

(2) Not optimizing for the 
final criterion

(1) Not well defined at 
silence segments



Popular Solution: Estimate and Apply a Mask/Gain

❑Solution: treat masks as hidden variables 

❖ ℒ2 = 𝐒𝐈𝐒𝐍𝐑 wavref, wav𝑝𝑟𝑒𝑑 𝜎 𝑌 , 𝑌 (for IRM∈ [𝟎, 𝟏])

❑Better Solution: Define ReLU hidden amplitude masks
❖ ℒ3 = 𝐒𝐈𝐒𝐍𝐑(wavref, wavpred(ReLU 𝑌 , 𝑌))

5/4/2020 Dong Yu: Solving Cocktail Party Problem – From Single Modality to Multi-Modality 9

𝐑𝐞𝐋𝐔 −𝐌𝐚𝐬𝐤(𝒕, 𝒇) ∈ [𝟎,+∞]for 

(1) Phase is missing

(1) Sigmoid masks may not 
exactly align with IRMs

(2) Optimize SISNR defined on 
estimated waveforms

(2) Tend to get masks with 
values close to 0 -> black hole



Use Complex-Valued Masks (the Choice)

• Estimate both magnitude and phase 

• Can avoid “spectral black holes” distortion observed in sigmoid/relu
masks and achieve better hearing perception and better ASR 
performance
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ReLU mask (WER 17.7%) Complex mask (WER 16.9%)

𝑀𝑟 , 𝑀𝑖 ∈ −∞,+∞
No need to clip the range as in 
earlier works since masks here 

are hidden variables



Extend to Multi-Channel (Spatial Filtering)

• Minimum Variance Distortionless Response (MVDR) Filter
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෡𝑊 = argmin
𝑊

෍

𝑡

𝐖𝐻𝐘𝑡
2 s.t. 𝐖𝐻𝑣=1   

𝑆𝑡,𝑓 = 𝐖𝑡,𝑓
𝐻 𝐘t,f

𝐖 =
𝛷𝑁𝑁
−1 𝑣

𝑣𝐻𝛷𝑁𝑁
−1 𝑣

or 𝐖 =
𝛷𝑁𝑁
−1 𝛷𝑆𝑆

𝑡𝑟𝑎𝑐𝑒(𝛷𝑁𝑁
−1 𝛷𝑆𝑆)

𝑢

• We can use DL models to estimate hidden complex mask 𝑐𝑚𝑠 per (t,f,m) 

Φ𝑠𝑠 =
1

σ1
𝑇((𝑐𝑚𝑠)𝐻(𝑐𝑚𝑠))

σ1
𝑇(𝑐𝑚𝑠𝑌)(𝑐𝑚𝑠𝑌)𝐻) Dilated 

CNNs

c𝑚𝑠

c𝑚𝑛 MVDR

𝐖𝒕,𝒇 and 𝐘t,f are M-dim 

complex vectors with M mics

Result of optimizing

Desired direction



Filtering Across Channels & Frames: Multi-tap MVDR
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෢𝑾 = argmin
𝑾

෍

𝑡

𝑾𝑡
𝐻ഥ𝒀𝑡

2
s.t.       𝐖𝟎

𝐻𝐯=1   

𝑺𝒕,𝒇 = ഥ𝐖𝑡,𝑓
𝐻 ത𝐘𝑡,𝑓

ഥ𝒀𝒕,𝒇 = [𝒀𝟏,𝒕, … , 𝒀𝑴,𝒕, 𝒀𝟏,𝒕−𝟏, … , 𝒀𝑴,𝒕−𝟏, …… , 𝒀𝟏,𝒕−𝑳, … , 𝒀𝑴,𝒕−𝑳]

Φ ҧ𝑠 ҧ𝑠 =෍

𝑡=1

𝑇
( ҧ𝑆)( ҧ𝑆)𝐻

σ1
𝑇((𝑐𝑚𝑠)𝐻(𝑐𝑚𝑠))

=෍

𝑡=1

𝑇
(𝑐𝑚𝑠 ത𝑌)(𝑐𝑚𝑠 ത𝑌)𝐻

σ1
𝑇((𝑐𝑚𝑠)𝐻(𝑐𝑚𝑠))

Result of optimizing

Dilated 
CNNs

c𝑚𝑠

c𝑚𝑛
Multi-tap 

MVDR

• Core Idea: Past frames can help estimate current frame 

(2) Augmented dimensions 
across channels and frames

(1) Valid for single/multi-
channel and multimodal setups



MVDR with Complex Masks (PESQ on 500-utt Test Set)

5/4/2020 Dong Yu: Solving Cocktail Party Problem – From Single Modality to Multi-Modality 13

Angle between target 
and interfering 

speakers

Number of overlapping 
speakers

Upper: single channel direct mask 
estimation.
Lower: multi channel. mask is 
estimated to compute the covariance 
matrix in MVDR. More friendly to ASR

<15⁰ <45⁰ <90⁰ <180⁰ 2 SPK 3 SPK 1 SPK AVE WER

Mixture 1.88 1.88 1.98 2.03 2.02 1.77 3.55 2.16 51.3%

Sigmoid Mask 1.78 1.96 2.20 2.08 2.14 1.74 3.62 2.22 27.7%

ReLU Mask 2.54 2.73 2.92 2.88 2.85 2.56 3.89 2.91 17.7%

Complex Mask 2.64 2.84 3.00 3.00 2.94 2.66 3.89 3.00 16.9%

Sigmoid Mask w/MVDR 2.24 2.56 2.80 2.72 2.64 2.35 3.67 2.71 16.7%

ReLU Mask w/MVDR 2.52 2.74 2.94 2.85 2.86 2.54 3.68 2.88 12.6%

Complex Mask w/MVDR 2.55 2.77 2.97 2.89 2.89 2.57 3.73 2.91 11.8%

CM Multi-tap MVDR 2.68 2.97 3.17 3.10 3.07 2.74 3.79 3.07 10.2%

Reverb Clean
WER=7.0%



Multi-tap MVDR vs MVDR (PESQ on 5007-utt Test Set)

MVDR <15⁰ <45⁰ <90⁰ <180⁰ 2 SPK 3 SPK 1 SPK AVE

PESQ 2.68 2.87 3.01 3.01 2.94 2.75 3.76 2.89

SDR 8.86 10.85 12.55 12.71 11.54 9.73 20.48 11.08

SISNR 7.45 9.40 11.00 11.22 10.06 8.29 18.08 9.6

WER 16.6%

Multi-tap 
MVDR

<15⁰ <45⁰ <90⁰ <180⁰ 2 SPK 3 SPK 1 SPK AVE

PESQ 2.75 2.99 3.15 3.14 3.05 2.85 3.80 2.99

SDR 9.57 12.20 14.12 14.04 12.80 10.82 20.90 12.22

SISNR 7.92 10.44 12.28 12.28 10.98 9.15 18.16 10.42

WER 15.0%
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Angle between target 
and interfering 

speakers

Number of overlapping 
speakers



Multi-tap MVDR: Example
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Complex Mask 
(single channel)

Multi-tap MVDR 
with Complex Mask

Conventional MVDR 
with Complex Mask

2 speakers mix + noise Reverb Clean



Further Works Not Covered Here

❑Filtering across channels, frames & frequency bins
❖ Because STFT causes frequency leakage when the window size is not large 

enough

❑Conduct separation/enhancement/dereverberation simultaneously
❖ So that we can recover dry clean speech (I only covered reverb clean in this talk)

❖ Exploitation of frames that cover both early and late reverberation

❖ Extend Weighted Power minimization Distortionless response (WPD) 

❑Direct estimation of filter weights 𝐖 esp. with multi-task joint training
❖ I only discussed the approach of estimating the masks as a way to estimate 

covariance matrix in MVDR
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We will disclose related techniques and results in upcoming papers



Outline

❑Mask-based -> Filter-based

❑Blind Source Separation -> Target Speaker Extraction

❑Single Modality -> Multi-Modality

❑Summary
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Blind Source Separation

• Allows systems to listen to multiple speakers simultaneously

• Learns from training set to look for hidden regularities (complicated 
soft constraints)

• Problem: Label Ambiguity / Label Permutation Problem

• Solutions: deep clustering and permutation invariant training
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Target Speaker Extraction

When there is information to identify the speaker of interest

Important in many application scenarios

Find information that can identify the target speaker
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Keyword Spotting: Speaker Who Says the Keyword
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Output keyword 
feature when it exists 
or zero otherwise

Keyword is the information 
to identify the target 
speaker

Text-dependent & 
speaker-independent

Single channel



Beamformer based Multi-look Enhancement

Multi-Channel

DOA independent 
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(1) Fixed beamformers 
with multiple fixed 

beams, equally 
sampled in space

(2) Keep one raw mic 
input to preserve 

target speech quality

(3) weighted sum 
using attention 
mechanism

(4) Joint training 
improves 
performance



Multi-look Neural Enhancement
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STFT

conv1d

c
o
n
c
a
te

n
a
te

masks for K 

look directions

Estimated 

speech signals 

Multi-channel 

mixture

…

Look Directions

…

enhancement blocks

·

iSTFT

conv1d

LPS

…

directional feature 

extractor

IPD

directional 

feature
Reference signals

y

supervise

…

Further Improvement 

over beamformer based multi-look enhancement

Each neural enhancer enhances the speech 
source closest to each look direction



Multi-look Neural Enhancement

Each neural enhancer enhances 
the speech source closest to 
each look direction
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0 degree
Look direction

90 degree
Look direction

180 degree
Look direction

270 degree
Look direction

Interference 
speaker

Target 
speaker

Enhance 
target speaker

Enhance 
target speaker

Enhance 
interference speaker

Enhance 
interference speaker

Further Improvement

over beamformer based 
multi-look enhancement



Comparison with Beamformer based Multi-Look
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0 degree
Look direction

90 degree
Look direction

180 degree
Look direction

270 degree
Look direction

Input
BF

BF

BF

BF

MLNE

MLNE
MLNE

MLNE: multi-look neural 
enhancement
BF: fixed beamformer

Target spk: 300 degree
Interference spk: 177 degree & 209 
degree
Thus,  for MLNE, target speaker 
enhanced at 0 degree and 270 
degree, while for BF, target speaker 
enhanced at 270 degree

Target speaker reference

MLNE



Keyword Spotting Accuracy Comparison 

-6 ~ 6dB SIR 
(multi-talker)

>6dB SIR 
(multi-talker)

One speaker 
SNR>6db

Raw input 10.98% 61.41% 83.16%

Beamformer ML Individual Enhancer 62.93% 85.33% 92.60%

Beamformer based multi-look
(4 look directions + 1mic)

38.88% 92.92% 95.09%

Multi-Look neural enhancement
(4 look directions)

88.68% 88.98% 88.95%

Multi-Look neural enhancement
(4 look directions + 1 mic)

93.40% 94.45% 94.02%

Operation point
<=1 false alarm over 12 hours’ TV, conversational speech and other noises
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Exploit the Speaker’s Voice Characteristics

❑Speaker-aware enhancement
❖When the speaker’s voice characteristics is available

❖ Address the problem of who to listen to

❑Things to leverage
❖ users’ wakeup words before voice command

❖ registered user voice profile on devices
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Deep Extractor Network (DENet)

❑Extract the speaker whose 
representation in a canonical 
space is closer to that of the 
anchor (e.g., keyword)

❑A variant of deep attractor 
network (DANet)

❑Difference: Exploit the anchor 
+ the relationship of anchor 
and the noisy target speech in 
the canonical space
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Deep Extractor Network (DENet)
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Input

Output

2-speaker mixture 3-speaker mixture

DENet: the proposed method.                                                           
DANet: Deep attract network. ”Anchor”: attractor calculated from anchor speech.  ”Near”: attractor from the 
mixture itself which is closer to  the attractor from anchor. “Oracle”: original DANet w/o using anchor speech, 
the largest SDR/PESQ among all speakers in the mixture. 



Speaker Embedding as Auxiliary Input: Voice Filter
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Joint optimization of 
total loss

Improved Voice 
Filter

frame-wise speaker 
embedding 

extracted on the 
registered target 

speaker utterances

Original Voice 
Filter

Enhancement 

Si-SNR loss

Sp
e
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t
lo

ss



Speaker Embedding as Auxiliary Input: Voice Filter
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Joint-train: the proposed method.     Pre-train: pre-trained speaker verification model used for Voice Filter.     
Finetune: pretrained speaker verification model finetuned on AISHELL-2 data. (AISHELL-2 is used for joint-training model) 

input Enhanced voice filter 



Outline

❑Mask-based -> Filter-based

❑Blind Source Separation -> Target Speaker Extraction
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Multi-modal Target Speech Separation
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(2) Directional 

feature 

extractor

(3) Lip 

embedding 

network

(4) Speaker 

embedding 

network

target speaker’s 

enrollment utterance

target speaker’s

lip movements

directional 

feature

target speaker

direction

lip 

embedding

mic 1…n

speaker 

embedding

Multi-modal Separation Network
target speech

(1) mixture speech

target

θ

extract

target 

information



Multi-modal Target Speech Separation
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Separation Network

Directional 

feature

Lip 

Embedding

Voice 

Embedding

mic 1

θ

mic n

Looking to Listen 

Separation Network

VGG Face 

Embedding

Separation Network

Voice 

Embedding

Voice Filter Multi-modal



Multi-modal Speech Separation: Front Face

Mixed Speech

Generated for a simulated acoustic 

environment

Speech Extracted for a Target Speaker 

using target speaker’s direction, target 

speaker’s mouth movement, and phase 

difference captured by microphone array 
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Multi-modal Speech Separation: Lateral Face

More demos: https://jupiterethan.github.io/av-enh.github.io/ 

Mixture Enhanced  
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https://jupiterethan.github.io/av-enh.github.io/


Impact of Different Modalities for Separation/Enhancement
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Input Modalities

Directional 
Feature

Enrolled
Voice

Target 
Lip

SDR (dB) PESQ WER (%)

√ 16.9 3.24 11.3

√ 14.8 2.98 14.7

√ 16.6 3.01 19.6

√ √ 17.1 3.25 10.5

√ √ √ 17.6 3.28 10.0

√ √ 17.5 3.28 10.3

Difference from speaker 
embedding is small。

We can stick to use only
Directional feature + Lip if
speaker embedding not 
available



Better Robustness with Multiple Modalities
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Ground Truth

over-suppresses the 

target speech when 

the speaker slightly 

turns his face

Leakage from 

interference when the 

speaker opens his 

mouth without speaking

No obvious issue

Lip Feature only



Robustness When One Modality is Missing or Inaccurate
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Lip Dropout Ratio SI-SDR

0% 17.2

10% 17.1

20% 17.1

50% 17.0

small angles (<15⁰) 
between target and 
interfering speakers

When Target Lip is Unavailable x% of Times When Directional Feature is Incorrect 

large angles (>=15⁰) 
between target and 
interfering speakers

Not important when the directional 
feature is accurate

Important when speakers are close or 
the target speaker is not facing the 
camera 



Network Structure for Multimodal Fusion
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Target speaker’s 

lip movements

lip reading network

STFT

conv1d

conv3d Resnet18

…

video blocks

lip

embeddings

c
o
n
c
a
te

n
a
te Target speech

mask

Estimated 
target speech

Multi-channel 

mixture speech

… …

…

acoustic 

embeddings

…

audio blocks

…

time step

time step

upsample

…

fusion blocks

·

iSTFT

conv1d

Audio stream 

Video stream 

Multi-modality fusion

LPS

feature 

extraction

speaker 

Model

speaker 

embeddings

…

time step

…

Speaker embedding streamtile

in time

…

M
u

lti-m
o

d
a

lity
 fu

s
io

n
Target speaker’s 

enrolled utterance

directional feature 

extractor

IPD

d(θ)

directional 

feature

Target clean x

y

Target speaker’s 

directionθ

𝐀 ∈ ℝ𝑇×𝐸

𝐕 ∈ ℝ𝑇×𝐷

𝐒 ∈ ℝ𝑇×𝐺

x̂

Training 

Loss



Network Structure for Multimodal Fusion
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Factorized Attention Fusion
Similar to multi-head attention

Fusion Method
SI-SDR 

(dB) 
avg

< 15⁰ > 90⁰

Concatenation 9.1 7.5 11.4

Rule-based Attention 8.9 6.3 11.9

Factorized Attention 9.3 7.6 11.5



Diarization
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Audio-only Multi-modal
State-of-the-art: UIS-RNN [1]

phoneaudio speaker

audio

speaker

video

Personal LM

𝑃(𝑥audio|𝑠) 𝑃(𝑝ℎ𝑛|𝑠)

Audio
Encoder

Video
Encoder

Sync
Layer



Diarization
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Audio-only Multi-modal
State-of-the-art: UIS-RNN [1]

phoneaudio speaker

audio

speaker

video

Personal LM

𝑃(𝑥audio|𝑠) 𝑃(𝑝ℎ𝑛|𝑠)

Issues
1. unbounded number of speakers
2. not robust when two speakers’ voices 
are similar
3. require labelled training data
4. cannot link the state to speaker id 
without pre-enrollment

Improvement
1. number of speakers are bounded by 
faces in the video
2. robust to speaker voice similarity
3. self-supervised learning with 
proposed dynamic triplet loss 
4. can link speaker with his face



Multi-modal Diarization
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Sync layer is critical because most audio and video are 
recorded unsynchronizely due to the hardware and the speed 
difference between light wave and sound wave. For example, 
speaker at 3m away will cause 1 frame delay between audio 
and video.

Sync
Layer

𝑃(𝑠|𝑥audio, 𝑥video)

STFT

conv1d

conv2d

Face 

Detection

conv3d

Audio Encoder

Video Encoder

find the best likely matched 
frame between audio and 
video. jointly trained



Multi-modal Diarization
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Audio-only Multi-modal

State-of-the-art: UIS-RNN
DER=25.6%

Our multi-modal diarization
DER=17.0%

Audio
Encoder

Video
Encoder

Sync
Layer

𝑃(𝑠|𝑥audio, 𝑥video)

𝑃(𝑠𝑝𝑘|audio)

Ground 
truth

𝑃 𝑠𝑝𝑘 audio, video)

spk1 spk2 spk3



Multi-modal Tracking and Diarization (hard case)
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Red Box: speaking

White Box: not speaking



Multi-modal ASR on LRS2 Corpus (Dry Clean)
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Encoder

Encoder A

V

Fu
sio

n

backend Decoder

LM

our system 
performs the 
best under all 
conditions on 
“dry clean” 



Modality Fusion for ASR on Overlapped Speech

WER=10.3%WER=11.5%WER=15.2%
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Multi-modal ASR for Overlapped Speech
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Tracking+Diarization+Separation+ASR (Easy Case)
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Raw input

Trace

Red box: 
speaking

White box:
not speaking



Tracking+Diarization+Separation+ASR (Hard Case)
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Raw input

Trace



Outline

❑Mask-based -> Filter-based

❑Blind Source Separation -> Target Speaker Extraction

❑Single Modality -> Multi-Modality

❑Summary
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Summary

5/4/2020 Dong Yu: Solving Cocktail Party Problem – From Single Modality to Multi-Modality 52

❑Mask-based -> Filter-based
𝑆𝑡,𝑓 = 𝑴𝒂𝒔𝒌𝑡,𝑓 × 𝑌𝑡,𝑓 -> 𝑆𝑡,𝑓 = 𝐖𝑡,𝑓

𝐻 𝐘t,f

❑Blind Source Separation -> Target Speaker Extraction
❖Exploit the information that can identify the speaker

❑Single Modality -> Multi-Modality
❖Multi-modality is much more robust/better performing than 

single-modality
❖Better model of separation/recognition are yet to be found
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