

The USTC-NELSLIP Systems for CHiME-6 Challenge

Jun Du

National Engineering Lab for Speech and Language Information Processing (NELSLIP) University of Science and Technology of China (USTC) 05/04/2020

Team

Jun Du (USTC)

Yan-Hui Tu (USTC)

Xin Tang (USTC)

Jian-Qing Gao (USTC)

Mao-Kui He(USTC)

Dan Liu (USTC)

Lei Sun (USTC)

Feng Ma (USTC)

Chin-Hui Lee (GIT)

Li Chai (USTC)

Jia Pan (USTC)

Jing-Dong Chen (NWPU)

CHIME-5 vs. CHIME-6

	CHiME-5	CHiME-6		
Data/Label Quality	New Array Synchronization			
Front-End	Two-Stage SD-SS[1]	MGSS, BGSS		
Acoustic Modeling	BLSTM, CNN-TDNN-LSTM, Improved CLDNN, DFCNNs [2]	ResNet, TDNNF, RBiLSTM, Self-attention, Dialation		
System Fusion	State Posterior Average Lattice Fusion [2]	MBR Fusion		
Speaker Diarization	N/A	NBSS ResNet Based x-vector Spectral Clustering		

[1] Lei Sun, Jun Du, Tian Gao, Yi Fang, Feng Ma, Chin-Hui Lee, "A Speaker-Dependent Approach to Separation of Far-Field Multi-Talker Microphone Array Speech for Front-End Processing in the CHiME-5 Challenge," IEEE Journal of Selected Topics in Signal Processing, 2019, 13(4): 827-840.

[2] Feng Ma, Li Chai, Jun Du, Diyuan Liu, Zhongfu Ye and Chin-Hui Lee, "Acoustic Model Ensembling Using Effective Data Augmentation for CHiME-5 Challenge," INTERSPEECH 2019.

Track 1: Multiple-array Speech Recognition

System Overview (I)

System Overview (II)

Recognition Stage

Implementation Platform

- The official Kaldi toolkit
 - Guided source separation (GSS)
 - Acoustic models
 - Language models
 - Model ensemble
- The Pytorch toolkit
 - Neural network based speech separation models
- Self-developed toolkit
 - cACGMM
 - Beamforming

Modified GSS (MGSS)

- cACGMM with 5 Gaussian mixtures
 - Corresponding to four speaker sources and one noise source
- The main difference between MGSS and GSS [4]
 - GEVD beamforming: offline + online [5]
 - Processing for selected-array data based on SINR
- [1] L. Drude, J. Heymann, C. Boeddeker, R. Haeb-Umbach, "NARA-WPE: A Python package for weighted prediction error dereverberation in Numpy and Tensorflow for online and offline processing," Speech Communication; 13th ITG-Symposium (pp. 1-5), 2018.
- [2] N. Ito, S. Araki , and T. Nakatani . "Complex angular central Gaussian mixture model for directional statistics in mask-based microphone array signal processing." EUSIPCO, 2016.
- [3] E. Warsitz and R. Haeb-Umbach, "Blind acoustic beamforming based on generalized eigenvalue decomposition," IEEE TASLP, vol. 15, no. 5, pp.1529-1539, 2007.
- [4] C. Boeddeker, J. Heitkaemper, J. Schmalenstroeer, L. Drude, J. Heymann, and R. Haeb-Umbach, "Front-end processing for the CHiME-5 dinner party scenario," in CHiME-5 Workshop, Hyderabad, India, 2018.
- [5] T. Higuchi, N. Ito, T. Yoshioka, and T. Nakatani, "Robust mvdr beamforming using time-frequency masks for online/offline asr in noise," ICASSP, 2016.

Beamforming GSS (BGSS)

• Motivation: improving the mask estimation of MGSS

 $\begin{array}{ll} \widehat{\pmb{S}}_{\rm BF}^{\rm T1} & {\rm denotes \ the \ beamformed \ STFT \ features \ of \ Target \ 1.} \\ \widehat{\pmb{LPS}}_{\rm BF}^{\rm T1} & {\rm denotes \ the \ beamformed \ LPS \ features \ of \ Target \ 1.} \\ M_{\rm IRM}^{\rm T1} & {\rm denotes \ the \ learning \ mask \ of \ Target \ 1.} \\ \widehat{\pmb{\varphi}}_{\rm BF}^{\rm D1} & {\rm denotes \ the \ IPD \ (inter-phase \ difference) \ between \ } \widehat{\pmb{S}}_{\rm BF}^{\rm T1} \ {\rm and \ } \widehat{\pmb{S}}_{\rm BF}^{\rm T2} \end{array}$

Training Data Generation for BGSS

- The above procedure generates the inputs/outputs for one target speaker
- The four speakers in one session are in turn considered as target speakers

Model Optimization for BGSS

- Architecture
 - BLSTM
 - Input layer: 5130=513*10
 - Hidden layers: 1024*2
 - Output layer: 2052=513*4
- Objective function

 $Err = (\hat{M}_{BGSS}^{T1} - M_{IRM}^{T1})^2 + (\hat{M}_{BGSS}^{T2} - M_{IRM}^{T2})^2 + (\hat{M}_{BGSS}^{T3} - M_{IRM}^{T3})^2 + (\hat{M}_{BGSS}^{T4} - M_{IRM}^{T4})^2$

Speech Demo

SSS (Good suppression of interference, residual noises are still existing)

Our MGSS+BGSS (Good suppression of interference, better denoising)

Front-end (GSS vs. Ours)

Results on development sets using the official baseline AM

H. Xu, et al. "Minimum Bayes Risk decoding and system combination based on a recursion for edit distance." *Computer Speech & Language* 25.4 (2011): 802-828. (**MBR fusion**)

Acoustic Data Augmentation

- Worn data:
 - Left-channel and right-channel with data cleanup
 - Speed perturbation
 - Data size: (32+32)*3=192 hours
- GSS data:
 - Speed perturbation
 - Data size: 32*3=96 hours
- MGSS data:
 - Multi-array and selected-array
 - Data size: 32+32=64 hours
- Volume perturbation and SpecAugment for all data
- Total training data: 352 hours

Acoustic Models (AMs)

- Single-feature AMs
 - 40-dim MFCC with 100-dim i-vector
- Multi-feature (from 4 speakers) AMs
 - 100-dim i-vector

Architecture and Optimization

- Four types:
 - ResNet-TDNNF (Multi-feature AM)
 - ResNet-TDNNF-Dialation (Multi-feature AM)
 - ResNet-TDNN-RBiLSTM (Single/Multi-feature AMs)
 - ResNet-SelfAttention-TDNNF (Single/Multi-feature AMs)

• Lattice-Free MMI [1]

- [1] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na, Y. Wang, and S. Khudanpur, "Purely sequence-trained neural networks for ASR based on lattice-free MMI", INTERSPEECH, 2016, pp.2751-2755.
- [2] S. Zagoruyko, N. Komodakis, "Wide residual networks," in BMVC, 2016. (ResNet)
- [3] N. Kanda, R. Ikeshita, S. Horiguchi, et al. "The Hitachi/JHU CHiME-5 system: Advances in speech recognition for everyday home environments using multiple microphone arrays," CHiME 2018. (**RBiLSTM**)
- [4] D. Povey, H. Hadian, P. Ghahremani, et al. "A time-restricted self-attention layer for ASR," ICASSP 2018. (SelfAttention)
- [5] D. Povey, G. Cheng, Y. Wang, et al. "Semi-orthogonal low-rank matrix factorization for deep neural networks," INTERSPEECH, 2018. (TDNNF)

ResNet-TDNN-RBiLSTM (Single-feature)

17

Resnet-TDNN-RBiLSTM (Multi-feature)

18

ResNet-SelfAttention-TDNNF

ResNet-TDNNF-Dialation & ResNet-TDNNF

AMs with Our Best Front-end

- Four multi-feature AMs with different architectures
- MBR fusion of 4 multi-feature AMs and 2 single-feature AMs

Results on development sets

Submitted Results

Category	Session		Dining Kitchen		Living	Overall
A	Dev	S02 S09	34.95 29.60	35.13 28.10	29.77 27.65	31.11
	Eval	S01 S21	25.55 25.49	42.75 34.97	38.13 26.05	30.96
B	Dev	S02 S09	34.66 29.10	34.86 27.74	29.50 27.22	30.77
	Eval	S01 S21	25.01 25.14	42.66 34.84	37.44 25.34	30.50

Track 2: Multiple-array Diarization and Recognition

System Overview

Neural Beamforming for SS (NBSS)

- Mask estimation for cACGMM with 5 Gaussian mixtures
- The "target" selection based on speech duration of beamformed data

Training Data Generation for NBSS

Speaker Diarization

• ResNet based x-vector extractor [1]

Layer name	Structure	Output	
Input Conv2D-1	3×3 , Stride 1	$\begin{array}{c} 40 \times 200 \times 1 \\ 40 \times 200 \times 32 \end{array}$	
ResNetBlock-1	$\left[\begin{array}{cc} 3 \times 3, 32 \\ 3 \times 3, 32 \end{array}\right] \times 3, \text{Stride 1}$	$40 \times 200 \times 32$	
ResNetBlock-2	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times4,\text{Stride 2}$	$20\times100\times64$	
ResNetBlock-3	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 6, \text{ Stride } 2$	$10\times50\times128$	
ResNetBlock-4	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 3, \text{ Stride } 2$	$5 \times 25 \times 256$	
StatsPooling	_	5×256	
Flatten	—	2560	
Dense1	_	256	
Dense2 (Softmax)	—	N	

• Spectral clustering [2]

[1] A. Gusev, et al. "Deep Speaker Embeddings for Far-Field Speaker Recognition on Short Utterances", arXiv:2002.06033v1.
[2] T. J. Park, et al. "Auto-Tuning Spectral Clustering for Speaker Diarization Using Normalized Maximum Eigengap", arXiv:2003.02405v1

Submitted Results

Category	Development set		Evaluation set				
	DERs	JERs	WER		DERs	JERs	WER
А	56.69	58.49	68.22		65.37	64.15	68.48
В	56.69	58.49	68.15		65.37	64.15	68.42

Thanks Q&A