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System overview
Designed for Track 1 A/B
Key components
I. Single-channel speech enhancement

• SE -> noise mask

• 1/2-stage SS -> speaker masks 

and embeddings

II. 2/3-stage GSS in training/testing 

phase

• 2-stage GSS with random 

microphone selection in 

training

• 3-stage GSS(*) in testing

III. Data augmentation

IV. Acoustic model

• 3 types of architectures

• 2 modules, SpecAug and Multi-

channel

V. System fusion
2



I. Single-channel speech enhancement

• SE model [1]

• Densely connected progressive learning for TDNN [2]

• Data

• Noise data : unlabeled segments filtered by ASR

• Clean data : Speech segments in original far-field audios, which is not clean 

actually

• Loss function : 𝐼𝑅𝑀 −෣𝐼𝑅𝑀
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• Architecture

• 4*2048 TDNN, 3 progressive output, 1 final output
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[1] L. Sun, J. Du, T. Gao, Y. Fang, F. Ma and C. Lee, "A Speaker-Dependent Approach to Separation of Far-Field Multi-Talker Microphone Array Speech for 
Front-End Processing in the CHiME-5 Challenge," in IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 4, pp. 827-840, Aug. 2019.
[2] T. Gao, J. Du, L. Dai and C. Lee, "Densely Connected Progressive Learning for LSTM-Based Speech Enhancement," 2018 IEEE International Conference on 
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I. Single-channel speech enhancement
• SS1-spk/SS2-sess model

• Data

• Clean data for SS1 : Non-overlap segments

• Loss for SS1: (log ෣𝐼𝑅𝑀 + log( 𝑌 − log(|𝑋|)))2

• Clean data for SS2/SS2* : Non-overlap segments + SS1 segments + GSS enhanced

• Loss for SS2*: 𝑃𝑆𝑀 − ෣𝑃𝑆𝑀
2
+ (𝑉𝑉𝑇 − 𝐵𝐵𝑇)

• Architecture

• 4*2048 TDNN
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[1]

[1] T. Gao, J. Du, L. Dai and C. Lee, "Densely Connected Progressive Learning for LSTM-Based Speech Enhancement," 2018 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, 2018, pp. 5054-5058.



II. 2/3/3*-stage GSS

• Old GSS

• Improvements

1. Good initialization & 24 mic

2. Interpolation of annotation and alignment for VAD in each frame 𝑡
0.4 × 𝑎𝑛𝑛𝑜𝑡 𝑡 + 0.6 × 𝑎𝑙𝑖𝑔𝑛(𝑡)

3. Microphone selection (SNR- or coherency-based [1]) , remove 4/5 from 20/24 mics

4. Fusion of microphone selection for each microphone 𝑖

𝑆𝑁𝑅 𝑖 & 𝐶𝑜ℎ(𝑖)

5. vMF-CACGMM model [2]

෍

𝑡,𝑓

0.5 log 𝑣𝑀𝐹 𝐸𝑡,𝑓 + log 𝐶𝐴𝐶𝐺𝑀𝑀 𝑌𝑡,𝑓
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[1] V. M. Tavakoli, J. R. Jensen, M. G. Christensen and J. Benesty, "A Framework for Speech Enhancement With Ad Hoc Microphone Arrays," in IEEE/ACM 
Transactions on Audio, Speech, and Language Processing, vol. 24, no. 6, pp. 1038-1051, June 2016.
[2] L. Drude and R. Haeb-Umbach, "Integration of Neural Networks and Probabilistic Spatial Models for Acoustic Blind Source Separation," in IEEE Journal of 
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II. 3-stage GSS compared with old GSS

• 3-stage GSS for testing

• 1st stage → generate ASR alignments

• 2st stage → generate each mic’s SNR

• 3rd stage → generate 3-stage audios 
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II. 3*-stage GSS compared with 3-stage GSS

• 3*-stage GSS for testing
• CACGMM → vMF-CACGMM

• SNR-based microphone selection → Fusion-based microphone selection
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II. Results
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Init VAD Model microphone
selection

Dev.
WER(%)

Improvement
(%)

Notes

- Annotation CACGMM 12 mics 47.67 Baseline

- Alignment CACGMM 12 mics 45.42 -2.34 Old GSS [1]

SS2 Alignment CACGMM 12 mics 43.73 -1.69

SS2 Interpolation CACGMM 12 mics 43.46 -0.27

SS2 Interpolation CACGMM 24 mics 42.59 -1.14
2-stage GSS 
for testing

SS2 Interpolation CACGMM SNR-based 42.14 -0.45
3-stage GSS 
for testing

SS2 Interpolation CACGMM Fusion 41.97 -0.17

SS2 Interpolation
vMF-

CACGMM
Fusion 41.75 -0.22  

3*-stage 
GSS for 
testing

[1] C. Zorilă, C. Boeddeker, R. Doddipatla and R. Haeb-Umbach, "An Investigation into the Effectiveness of Enhancement in ASR Training and Test for Chime-5 
Dinner Party Transcription," 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), SG, Singapore, 2019, pp. 47-53.

Acoustic model : CNN-TDNNF, Data : worn(2)+oldgss(1)



II. Spectrum of 3-stage and 3*-stage
It is the blue, I think
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Baseline GSS

3-stage GSS

3*-stage GSS



II. 2-stage GSS compared with old GSS

• 2-stage GSS for training
• Random microphone selection to generate 7-fold data
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III. Data augmentation
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1. Small dataset for small acoustic models
• Totally (2+7)*3*40 -> 1000 hours

2. Large dataset for large acoustic models
• Totally (3+3+3+7+6)*3*40 -> 2600 hours



IV. Acoustic model
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CNN-TDNNF
5-layer CNN
9-layer TDNNF

CNN-TDNN-BLSTM
2-layer CNN
8-layer TDNN
3-layer BLSTM
Interleave BLSTM with TDNN

CNN-BLSTM
3-layer CNN
3-layer BLSTM
3-layer DNN

3 main architectures

2 tricks for training

• Short utterance combination

• Bi-phone tree for chain model, instead of triphone

2 modules

SpecAug [1]
Useful for CNN-TDNNF 
and CNN-BLSTM

4-ch branch
• Inspired from [2]
• Use LPS and magnitude squared coherence (MSC)
• CNN(-BLSTM) instead of TDNN-BLSTM
• Decode use REF array

[1] Park, Daniel S. et al. “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition.” Interspeech 2019 (2019): n. pag. Crossref. 
Web.
[2] N. Kanda, Y. Fujita, S. Horiguchi, R. Ikeshita, K. Nagamatsu and S. Watanabe, "Acoustic Modeling for Distant Multi-talker Speech Recognition with Single-
and Multi-channel Branches," ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United 
Kingdom, 2019, pp. 6630-6634.



IV. Results of data aug. & training tricks
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Data(fold) Modules Dev.
WER(%)

Improvement

worn(2)
+oldGSS(1)

- 42.14

worn(2)
+oldGSS(1)

SpecAug 40.57 -1.57

worn(2)
+2-stage GSS(2)

SpecAug 39.91 -0.66

worn(*2)
+2-stage GSS(7)

SpecAug 39.79 -0.12

worn(2)
+2-stage GSS(7)

SpecAug
+ short utterance combination

39.20 -0.59

worn(2)
+2-stage GSS(7)

SpecAug
+ short utterance combination 
+ biphone tree

38.73 -0.47

Acoustic model : CNN-TDNNF, Front-end : 3-stage GSS



IV. Results of acoustic models
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V. Fusion
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Weighted average of posterior probability
Steps:
1. For each type of acoustic models, conduct average fusion.
2. For different types of models, conduct weighted fusion.
3. For different types of front-end, conduct weighted fusion.

Acoustic model type (#) 3-stage GSS
Dev./Eval. WER(%)

3*-stage GSS
Dev./Eval. WER(%)

CNN-TDNNF (3) 36.71/38.79 36.25/38.46

CNN-TDNNF + Multi-channel (3) 36.23/37.13 36.07/37.05

CNN-TDNN-BLSTM (3) 36.63/38.86 36.38/38.52

CNN-TDNN-BLSTM + Multi-channel (2) 37.02/38.32 36.67/38.28

CNN-BLSTM (3)
CNN-BLSTM + Multi-channel (1)

34.88/36.37 34.48/36.36

Fusion with weight 0.05:0.15:0.1:0.1:0.6 34.18/35.67 33.76/35.56

Fusion with weight 0.4:0.6 33.55/35.11

RNN rescore 32.92/34.53



V. Final results & Conclusion

• The initialization and microphone selection plays an important role in our 
front-end. The fusion of different front-end can stably lower the WER.

• The data augmentation is important to increase the capacity of acoustic 
models.

• The multi-channel branch may help the performance.

• The deep CNNs can bring a better acoustic model.
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Thank you
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