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Abstract

This paper describes our system and experimental results for
the 6th CHiME Challenge. We participate in Track1(ASR only)
on Category A and B. Category A is system based on conven-
tional acoustic modeling and official language modeling. The
outputs of the acoustic model must remain frame-level tied pho-
netic (senone) targets and the lexicon and language model must
not be changed compared to the conventional ASR baseline.
Category B is all other systems. Our system mainly include
data preparation, frontend procesing, acoustic modeling, lat-
tice rescoring with RNN Language Model(RNNLM) and sys-
tem combination. The frontend employs the baseline Guided
Source Separation(GSS) [1]. For backend, we use TDNN-F
and CNN-TDNNF [2] acoustic models, the systems employs a
combination of 8 acoustic models, and finally apply Minimum
Bayes Risk(MBR) [3] decoding for multiple lattices of differ-
ent acoustic models. Comparing with the offical baseline sys-
tem, our system can get 20.44% and 18.07% relative Word Error
Rate(WER) reduction on the dev and eval sets respectively.

1. Introduction

Significant progress in Automatic Speech Recognition (ASR)
area is made in recent years. Many ASR tasks have been in-
tensively studied, and human parity level is achieved or even
outperform for some of them [4]. However, there are still many
challenges for researchers in ASR [5]. In particular, multitalker
speech recognition is one of the most difficult tasks for speech
recognition [6, 7] because of the difficulty of separating the tar-
get speech signal from other interfering speech signals. One ex-
ample is meeting speech recognition, where it is known that the
WERSs are still around 30% [8] even with state-of-the-art speech
recognizers. Another example is Distant Speech Recognition
(DSR) in a daily home environment, such as a dinner party [7],
which will be useful for developing intelligent home devices.
DSR specific factors such as reverberation, noisiness, overlap
speech of several speakers, etc. degrade ASR system perfor-
mance drastically. To push the boundary of the state-of-the-art
ASR for the complicated noisy environments, the CHiME chal-
lenge has been held every one or two years [7, 9, 10, 11, 12, 13].

CHiME-6 targets the problem of distant microphone con-
versational speech recognition in everyday home environments.
The main features of the CHiME-6 challenge are:

 simultaneous recordings from multiple microphone ar-
rays;

« real conversation, i.e. talkers speaking in a relaxed and
unscripted fashion;

* arange of room acoustics from 20 different homes each
with two or three separate recording areas;

» real domestic noise backgrounds, e.g., kitchen appli-
ances, air conditioning, movement, etc.
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Figure 1: Framework of system.

Details on the challenge can be found in [13].

Our system focus on Trackl(ASR only) with conven-
tional acoustic model, which include data preparation, frontend,
acoustic modeling, language modeling and system combination
with MBR decoding. Figure 1 shows the framework of the sub-
mission system. With the proposed system, we finally achieve
41.18% and 42.02% WER on the dev and eval sets respectively.
The rest of paper is organized as follows, section 2 describes the
system in detail. The details of our expermental evaluation are
given in section 3.

2. System Description

The overall framework of our system constain data preparation,
frontend processing, acoustic modeling, language modeling and
decoding, which is described in detail as follows:

2.1. Data Preparation
2.1.1. CHIiME-6 Corpus

The dataset for CHiME-6 challenge is same as the dataset for
CHiIiME-5 challenge. The dataset is made up of the record-
ing of 20 separate dinner parties taking place in real homes.
Recordings are made in kitchen, dining and living room areas
with eachphase lasting for a minimum of 30 mins. Each din-
ner party has 4 participants. Each party has been recorded with
a set of 6 Microsoft Kinect devices and in-ear binaural micro-
phones(worn data). Each Kinect device has a linear array of 4
sample-synchronised microphones. The data is split into train-
ing, development, and evaluation. These in-ear microphone sig-
nals are considered as close talk, and they are only used in train-
ing and development.

The training set consist of 16 parties with 32 speakers in
total. The number of utterances in the training set is 79, 967
adding up to around 41 hours. Development set has 2 parties
with 8 speakers and 7, 437 utterances with nearly 4.5 hours of
audio. Similarly 2 parties with 8 speakers and 11, 027 utter-



ances comprising of 5.1 hours of audio is used as the evaluation
set.

2.1.2. Data augmentation

To simulate the reverberation conditions, we apply randomly
generated impulse responses simulated by the image method
by following the small and middle sized room settings in [14].
We also randomly add non-speech region extracted from micro-
phone array training data in order to simulate the noisy condi-
tion.

2.1.3. Training data

For the training data, comparing to official baseline, in addition
we clean up and augment the data on the following aspects :

¢ For the worn(L+R) microphone training data, realign
original utterance segmentation using ASR model

* We apply only speed perturbation(x3) [15] for the tran-
ing data without the volume perturbation

e Clean up the training data by filtering out segments
which are less than 1 second

* Remove some noises which can be recognized as words
from noises used in Room Impuse Responses(RIR) con-
volution

With the above data cleanup and data augmentation methods,
we obtain about 1400 hours of data as the final training set,
which contains the following dataset:

¢ The realigned worn(L+R)training data
» The far field data enhanced by GSS module

e The worn data and enhanced far field data both con-
volved with RIRs

* The augmented previous three datasets by speed pertur-
bation

2.2. Frontend processing

Figure 2 shows the framework of the GSS enhancement sys-
tem. GSS enhancement is a blind source separation technique
originally proposed in [1] to solve the speaker overlap prob-
lem in CHiME-5. Given a mixture of reverberated speech, GSS
aims to separate the sources using a traditional signal process-
ing approach. To separate the different sources, GSS apply the
complex Angular Central Gaussian Mixture Model (CACGMM)
[16].

To avoid the permutation problem and to simplify the esti-
mation of the model parameters, GSS exploite the time anno-
tations provided by the challenge organizers, which indicates
when a particular speaker is active. These source activity pat-
terns guide the estimation of the mixture model parameters and
avoid the need to solve the frequency permutation and the global
speaker permutation problem.

Masks estimated from the GSS output, are used for beam-
forming and/or mask-based source extraction. As beam-
former we employ the Minimum Variance Distortionless Re-
sponse (MVDR) beamformer with Blind Analytic Normaliza-
tion (BAN) [17, 18, 19].

Temporal context [20] also plays an important role in the
GSS. Experiments have shown that a large context of 10 or 15
seconds left and right of the considered segment improves the
mixture model estimation performance significantly.
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Figure 2: The front-end consists out of WPE, a spacial mix-
ture model that uses time annotations (GSS), beamforming and
masking.

GSS is performed with the first and last microphones of
each array, and estimation performance is better than using them
all.

Compared to the official baseline setup which apply GSS
in testing stage , we apply the GSS not only in testing stage but
also in training stage.

2.3. Acoustic modeling

For acoustic model training, we use two different kinds of
acoustic model structures based on lattice-free maximum mu-
tual informaton (LF-MMI) [21] training. They are TDNN-
F network and CNN-TDNN-F network with the {40, 80}-
dimenstion MFCC and 100-dimenstion online ivector. We train
various acoustic models with different parameters and all the
acoustic models are trained using Kaldi [22] toolkit. To deter-
mine the set of systems which should be combined for optimal
performance, a greedy search procedure is employed. They are
listed as follows:

¢ CNN-TDNN-F{1, 2, 3, 4}: GSS module with {10, 15}
context, 40-dim MFCC, 6-layer CNN + 19-layer TDNN-
F with bottleneck-dim = 512, NUM-PDFS = {2500,
3500}, RIR augment

* CNN-TDNN-F{5, 6}: GSS module with {10, 15} con-
text, 40-dim MFCC, 6-layer CNN + 19-layer TDNN-F
with bottleneck-dim = 768, NUM-PDFS = 3500, RIR
augment

e CNN-TDNN-F7: GSS module with 15 context, 80-
dim MFCC, 6-layer CNN + 19-layer TDNN-F with
bottleneck-dim = 512, NUM-PDFS = 3500, RIR aug-
ment

e TDNN-F8: GSS module with 15 context, 40-dim
MEFCC, 25-layer TDNN-F with bottleneck-dim = 512,
NUM-PDES = 2500, RIR augment

2.4. Language modeling

We train recurrent neural network language models (RNNLM)
by using the official transcription of training data. We prepare
two 2-layer LSTM-based models with projection to rescore the
lattice. We submiit results without and with RNN-LM as shown
in Table 6(Category A without RNN-LM and Category B with
RNN-LM).

2.5. Decoding

In decoding phase, we use multiple acoustic models which are
described in acoustic modeling section. Firstly, we get the lat-
tices from each acoustic model. Then, we perform lattice fusion
followed by MBR decoding [3] to combine recognition results
from different models and different versions of GSS.



3. Expermental evaluation
3.1. Acoustic models

For acoustic models, we use official TDNNF model with 15
layers, deeper TDNNF model with 25 layers , CNN-TDNNF
model which 6 convolution layers [23] and followed by 19
TDNNF layers. Table 1 compare the three acoustic models us-
ing the official training data and frontend module.

Table 1 show that replacing the TDNN-F with the CNN-
TDNNF AM yield more than 2 % absolute WER reduction.

Table 1: WER(%) of different acoustic models on the dev and
eval sets

AM dev eval
tdnnf15 51.76 | 51.29
tdnnf25 50.77 | 50.30

cnn-tdnnf25 | 48.53 | 48.15

3.2. Frontend

In order to match the data in testing stage, we also apply GSS
module for all multi-array data in the training stage, instead
of randomly selecting 400k utterances from multi-array data in
baseline. The result of WER is presented in Table 2. Compared
to the official baseline, WER is reduced by 2% absolutely on
dev set. We conjecture that the multi-array GSS training data
are more compatible with dev and eval dataset. Furthemore,
as a result of multi-array GSS in training stage, the amount of
training data is reduced from 1500 hours to 240 hours. Conse-
quently, it can speed up acoustic model training.

Table 2: WER(%) of different frontends on the dev and eval sets

Frontend dev eval
baseline 48.53 | 48.15
multi-array GSS in training stage | 46.54 | 48.02

3.3. Data augmentation

By applying GSS module in training stage, it significantly re-
duce the amount of training data. In order to augment the train-
ing data, we repalce the L channel worn data with the L+R chan-
nel worn data and realigned (L+R) channels worn data respec-
tively, WER can be reduced by 0.99% and 0.72% absolutely on
dev and eval sets. After RIR data augmentation, the amount of
training data increase by 4 times. It has a total of 1800 hours.
After cleaning up, there are 1400 hours left which is equivalent
to the baseline. RIR data augmentation greatly improves the
performace of our system. The result of WER is presented in
Table 3. We achive 0.49% and 1.53% WER absolutely reduc-
tion on the dev and eval sets.

Table 3: WER(%) of different datasets on the dev and eval sets

data dev eval

multi-array GSS + worn(L) 46.54 | 48.02
multi-array GSS + worn(L+R) 45.55 | 47.30
multi-array GSS + aligned worn(L+R) 45.80 | 47.34
multi-array GSS + aligned worn(L+R) + RIR | 45.31 | 45.81

3.4. Feature

WER with different feature-dim are shown in Table 4. Com-
paring to model which used 40-dimenstion MFCC, we find that
using 80-dimenstion MFCC can get 44.99% and 45.28% WER
on the dev and eval sets.

Table 4: WER(%) of different feature-dim on the dev and eval
sets

feature dev eval
CNN-TDNN-F4(40-dim) | 45.31 | 45.81
CNN-TDNN-F7(80-dim) | 44.99 | 45.28

3.5. System combination

Finally, our single acoustic model WER are shown in Table 5.
We combine lattices produced by multiple acoustic models de-
scibed in section 2.3, and then apply MBR decoding to get the
final result. In Trackl, for Category A, we get the lattice using
offical N-gram LM, combine lattices and apply MBR decoding.
At last we achieve the WER of 41.99% and 42.41% on the dev
and eval sets. For Category B, The only difference is to rescore
the lattices by using RNNLM, we get 41.18% and 42.02% of
WER on dev and eval sets.

Table 5: WER(%) of different acoustic models on the dev and
eval sets

AM dev eval
CNN-TDNN-F1(10,2500) | 45.20 | 45.76
CNN-TDNN-F2(10,3500) | 45.00 | 45.58
CNN-TDNN-F3(15,2500) | 45.61 | 45.74
CNN-TDNN-F4(15,3500) | 45.31 | 45.81

CNN-TDNN-F5(10) 45.46 | 45.80
CNN-TDNN-F6(15) 45.50 | 46.17
CNN-TDNN-F7 4499 | 45.28
TDNN-F8 46.66 | 47.14

3.6. Results summary

To summarize, the final results of our system in detail on the
development and evaluation sets are reported in Table 6. One
another point is that RNN-LM is effective for all environments.
We are able to confirm the robustness of RNN-LM for the nat-
ural conversation.

Table 6: WERs of the system in Trackl(ASR only) for Category
A and Category B

Category Session Kitchen | Dining | Living | Ave
S0z | 4742 | 4557 | 3831

A Devi | go0 | 3908 | 4322 | 38580 | 419

Eval | SOT | 5800 | 3583 [ 4780 | ..

S21 | 5149 | 35.00 | 34.43 :
S02 | 46.66 | 4500 | 37.47

B Devi | 09 | 3848 | 4199 | 3804 | 4118
SOT | 5756 | 3547 | 47.76

Eval | 'oo1 | 5095 | 3495 | 3375 | 4202




4. Conclusions

In this paper we present our system for the 6th CHiME Chal-
lenge. The OPPO systems explore various enhancements, fron-
tends, AM architectures for the final submission system. The
system achieve a performance of 20.44% and 18.07% relative
Word Error Rate(WER) reduction on the dev and eval sets re-
spectively. The system focuses on acoustic robustness .

5. References

[1] Boeddeker, Christoph, et al. "Front-end processing for the CHiME-
5 dinner party scenario.” CHiMES Workshop, Hyderabad, India.
2018.

[2] Povey, Daniel, et al. ”Semi-Orthogonal Low-Rank Matrix Factor-
ization for Deep Neural Networks.” Interspeech. 2018.

[3] Xu, Haihua, et al. ’Minimum bayes risk decoding and system com-
bination based on a recursion for edit distance.” Computer Speech
& Language 25.4 (2011): 802-828.

[4] Saon, George, et al. “English conversational telephone
speech recognition by humans and machines.” arXiv preprint
arXiv:1703.02136 (2017).

[5] Peddinti, Vijayaditya, et al. ”Far-Field ASR Without Parallel Data.”
INTERSPEECH. Vol. 9. 2016.

[6] Yoshioka, Takuya, et al. "Recognizing overlapped speech in meet-
ings: A multichannel separation approach using neural networks.”
arXiv preprint arXiv:1810.03655 (2018).

[7]1 Barker, Jon, et al. "The fifth’CHiME’speech separation and recog-
nition challenge: dataset, task and baselines.” arXiv preprint
arXiv:1803.10609 (2018).

[8] Kanda, Naoyuki, et al. ”Acoustic modeling for distant multi-
talker speech recognition with single-and multi-channel branches.”
ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2019.

[9] Barker, Jon, et al. "The PASCAL CHiME speech separation and
recognition challenge.” Computer Speech & Language 27.3 (2013):
621-633.

[10] Vincent, Emmanuel, et al. "The second ‘CHiME’speech sepa-
ration and recognition challenge: An overview of challenge sys-
tems and outcomes.” 2013 IEEE Workshop on Automatic Speech
Recognition and Understanding. IEEE, 2013.

[11] Barker, Jon, et al. "The third ‘CHiME’speech separation and
recognition challenge: Dataset, task and baselines.” 2015 IEEE
Workshop on Automatic Speech Recognition and Understanding
(ASRU). IEEE, 2015.

[12] Vincent, Emmanuel, et al. ”The 4th CHiME speech separation and
recognition challenge.” URL: http://spandh. dcs. shef. ac. uk/chime
challenge Last Accessed on 1 August, 2018 (2016).

[13] Watanabe, Shinji, et al. "CHiME-6 Challenge: Tackling mul-
tispeaker speech recognition for unsegmented recordings.” arXiv
preprint arXiv:2004.09249 (2020).

[14] Ko, Tom, et al. ”A study on data augmentation of reverber-
ant speech for robust speech recognition.” 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017.

[15] Ko, Tom, et al. ”Audio augmentation for speech recognition.” Six-
teenth Annual Conference of the International Speech Communica-
tion Association. 2015.

[16] Ito, Nobutaka, Shoko Araki, and Tomohiro Nakatani. "Complex
angular central Gaussian mixture model for directional statistics in
mask-based microphone array signal processing.” 2016 24th Euro-
pean Signal Processing Conference (EUSIPCO). IEEE, 2016.

[17] Souden, Mehrez, Jacob Benesty, and Sofiene Affes. ”On opti-
mal frequency-domain multichannel linear filtering for noise re-
duction.” IEEE Transactions on audio, speech, and language pro-
cessing 18.2 (2009): 260-276.

[18] Erdogan, Hakan, et al. “Improved mvdr beamforming using
single-channel mask prediction networks.” Interspeech. 2016.

[19] Warsitz, Ernst, and Reinhold Haeb-Umbach. “Blind acoustic
beamforming based on generalized eigenvalue decomposition.”
IEEE Transactions on audio, speech, and language processing 15.5
(2007): 1529-1539.

[20] Zorila, Catalin, et al. ”An Investigation into the Effectiveness of
Enhancement in ASR Training and Test for CHiME-5 Dinner Party
Transcription.” arXiv preprint arXiv:1909.12208 (2019).

[21] Povey, Daniel, et al. "Purely sequence-trained neural networks for
ASR based on lattice-free MMI.” Interspeech. 2016.

[22] Povey, Daniel, et al. ”The Kaldi speech recognition toolkit.” IEEE
2011 workshop on automatic speech recognition and understand-
ing. No. CONF. IEEE Signal Processing Society, 2011.

[23] Ghahremani, Pegah, et al. ”Acoustic Modelling from the Signal
Domain Using CNNs.” Interspeech. 2016.



