
The STC System for the CHiME-6 Challenge

Ivan Medennikov1,2, Maxim Korenevsky1, Tatiana Prisyach1, Yuri Khokhlov1,
Mariya Korenevskaya1, Ivan Sorokin1, Tatiana Timofeeva1, Anton Mitrofanov1,

Andrei Andrusenko1,2, Ivan Podluzhny1, Aleksandr Laptev1,2, Aleksei Romanenko1,2

1STC-innovations Ltd, 2ITMO University, Saint Petersburg, Russia
{medennikov, korenevsky, knyazeva, khokhlov, korenevskaya, sorokin, timofeeva,

mitrofanov-aa, andrusenko, podluzhnyi, laptev, romanenko}@speechpro.com

Abstract
This paper describes the STC system for the CHiME-

6 Challenge aimed at multi-microphone multi-speaker speech
recognition and diarization in a dinner party scenario. The sys-
tem for Track 1 utilizes soft-activity based Guided Source Sepa-
ration (GSS) front-end and a combination of advanced acoustic
modeling techniques, including GSS-based training data aug-
mentation, multi-stride and multi-stream self-attention layers,
statistics layer and spectral augmentation, as well as lattice-
level fusion of acoustic models. The system showed WER of
33.53%/35.79% on the development/evaluation data.

For Track 2, we proposed a novel Target-Speaker Voice Ac-
tivity Detection (TS-VAD) approach, which directly solves the
diarization problem and allows performing GSS on top of the
diarized segments. Our TS-VAD is based on i-vector speaker
embeddings, which are initially estimated using a strong x-
vector diarization system with spectral clustering. This ap-
proach allowed to achieve DER of 37.30%/41.40%, JER of
36.11%/39.73%, and WER of 41.56%/44.49% using acoustic
models from the Track 1 system.

Additionally, lattice rescoring with a neural language model
was applied for Ranking B and provided WER reduction to
30.96%/33.91% in Track 1 and 39.56%/42.67% in Track 2.
Index Terms: automatic speech recognition, speaker diariza-
tion, guided source separation, target-speaker VAD, CHiME-6

1. Track 1: Speech recognition only
1.1. Front-end

Track 1 conditions allow the participants to use the information
about the speaker boundaries for each utterance. So it is pos-
sible to use Guided Source Separation (GSS) [1, 2], which was
developed during the CHiME-5 Challenge [3] and later [4, 5]
allowed to improve the recognition accuracy significantly. The
STC system uses the combination of the Weighted Prediction
Error (WPE) dereverberation method [6], GSS and the Min-
imum Variance Distortionless Response (MVDR) beamform-
ing [7] adopted from the baseline system.

As noted in [5], the use of the refined utterance boundaries
obtained after the first-pass decoding can provide an additional
WER improvement. By default, per-frame speaker activities in-
duced from hard label information are multiplied by the spectral
masks after each iteration of GSS. We supposed that using soft-
activity labels can improve the masks estimates. Soft-activities
can be extracted from the first-pass decoding lattices. However,
we found that better results can be obtained using speaker activ-
ity probabilities estimated by a special model. A more detailed
description of such models is given in Section 2.2.

The basic MVDR-beamforming procedure included in the

pb chime1 package uses spectral masks obtained from GSS. Af-
ter a thorough analysis of this procedure, we found several ways
to improve the accuracy slightly. The first one is a diagonal reg-
ularization of noise spatial covariance matrices. The second one
is excluding one-third of all microphones with worst Envelope
Variance [8] scores from the beamforming.

1.2. Back-end

As demonstrated in [4], using GSS-enhanced data in training
improves ASR results significantly. Following this, we trained
AM on a dataset consisting of worn microphones recordings
and data obtained using four versions of GSS with various set-
tings (microphone set, context length, number of iterations). We
also used the room simulation, speed and volume perturbation
included in the baseline recipe.

Our basic AM consists of 9-layer Convolutional Neural
Network (CNN) [9] with residual connections, followed by 8-
layer Factorized Time-Delay Neural Network (TDNN-F) [10].
The network takes an 80-dimensional log Mel filterbank or
Gammatone filterbank [11] feature vectors as an input. Mean
and standard deviation statistics computed by the “stats” layer
are used as additional input channels, and a SpecAugment [12]
layer is applied for spectral perturbation. Speaker embeddings
are also used to provide a speaker-aware training. We obtained
the best results when using i-vectors [13] as speaker embed-
dings, however, models with x-vectors [14, 15]) were also in-
cluded in an ensemble. We also observed a noticeable improve-
ment after adding multi-stride and multi-stream self-attention
layers [16, 17] into the model. All the models were trained ac-
cording to the Lattice Free Maximum Mutual Information (LF-
MMI) [18] criterion and fine-tuned for one more epoch of state-
level Minimum Bayes Risk (sMBR) [19] training.

Finally, we performed lattice fusion followed by MBR de-
coding [20] to combine recognition results from different mod-
els and different versions of GSS.

As part of Ranking B, the regularized Long Short-Term
Memory (LSTM) LM [21] on Byte Pair Encoding (BPE) [22]
text decomposition was applied for lattices rescoring [23] prior
to fusion. This provided an additional WER reduction.

Recognition results are presented in Table 1.

Dev WER% Eval WER%

Kaldi baseline 51.76 51.29
Best single AM 36.82 38.59
Fusion 33.53 35.79

Lattice rescoring + Fusion 30.96 33.91
Table 1: ASR results for Track 1

1https://github.com/fgnt/pb_chime5

https://github.com/fgnt/pb_chime5


2. Track 2: Diarization and ASR
In Track 2, participants are not allowed to use the informa-
tion about the speakers’ boundaries for utterances. Detection
of such boundaries is one of the goals of Track 2. Baseline
recipe uses the agglomerative hierarchical clustering (AHC) of
x-vectors on VAD segments. However, this approach does not
allow one to take into account the regions where speakers over-
lap over time. In order to tackle this, we investigated a novel
approach referred to as Target-Speaker Voice Activity Detec-
tion (TS-VAD), which was inspired by End-to-End Neural Di-
arization [24, 25], Target-Speaker ASR [26] and Personal VAD
[27]. TS-VAD takes standard acoustic features (MFCC) along
with the embeddings of each speaker as its inputs and gives the
probability of each speaker activity on each frame. However,
TS-VAD requires a sufficiently accurate initial diarization to es-
timate i-vectors for each speaker. To obtain such a diarization,
we improved the baseline procedure in two main directions.

2.1. Baseline diarization improving

Firstly, Track 2 conditions allow the participants to use the Vox-
Celeb [28] data for the diarization models training. So we used
the improved 34-layer Wide ResNet (WRN) x-vector extrac-
tor [29] trained on the VoxCeleb data. Basic AHC clustering
of these WRN x-vectors computed on the same VAD segments
by PLDA scores improved DER by about 12% abs. compared
to the baseline extractor. Secondly, we replaced PLDA scores
with cosine similarities and applied Spectral Clustering (SC)
with automatic selection of the binarization threshold [30] in-
stead of AHC, which reduced DER by another 5-7% abs. Such
diarization accuracy is already sufficient to provide a good start
for TS-VAD.

DEV EVAL
DER JER DER JER

x-vectors + AHC 63.42 70.83 68.20 72.54
WRN x-vectors + AHC 53.45 56.76 63.79 62.02
WRN x-vectors + SC 47.29 49.03 60.10 57.99

+ TS-VAD-1C (it1) 39.19 40.87 45.01 47.03
+ TS-VAD-1C (it2) 35.80 37.38 39.80 41.79
+ TS-VAD-MC 34.59 36.73 37.57 40.51

Fusion (best DER) 32.84 36.31 36.02 40.10
Fusion (best WER) 37.30 36.11 41.40 39.73

Table 2: Diarization results for Track 2

2.2. Target-speaker VAD

The STC system includes two types of TS-VAD models. The
first one (TS-VAD-1C) can be described as follows. Input
MFCC features are transformed by a 4-layer CNN and then
fed to four parallel Speaker Detection (SD) blocks. Each SD
block is a 2-layer Bidirectional LSTM (BLSTM) with projec-
tions [31] taking an i-vector corresponding to the speaker as
an additional input. It is important to note that the parame-
ters of four SD blocks are shared. Then, combined outputs
of four SD blocks are passed to one more BLSTM layer fol-
lowed by four parallel fully connected layers and 2-class soft-
max layers on top of them. Four pairs of outputs produced
by the TS-VAD model represent the probabilities of the pres-
ence/absence of each speaker on the current frame. The train-
ing loss is a sum of 4 cross-entropies computed from speaker
alignment. The described TS-VAD model is applied to each

of the Kinect channels separately, and then the probabilities
are averaged over the channels for each speaker. After sim-
ple post-processing (thresholding, median filtering, combining
speech segments separated by short pauses, deleting too short
speech segments) of these probabilities, one can obtain an im-
proved speaker segmentation with significantly reduced DER.
These probabilities can be used as weights for recalculating the
i-vectors. We used the obtained embeddings in the second iter-
ation of the described approach, which provides an additional
DER improvement. The third iteration, however, did not pro-
vide any improvement.

The second TS-VAD model (TS-VAD-MC) is multichannel
and takes a combination of TS-VAD-1C model SD blocks out-
puts from a set of 10 Kinect recordings as an input. The chan-
nels of input Kinect recordings are chosen randomly for train-
ing, and the 1st and 4th channels are taken at test-time. This
way of combining information from different channels is more
effective than a simple averaging of probabilities, as in the TS-
VAD-1C model. All the SD vectors for each speaker are passed
through a convolutional layer and then combined by means of
a simple attention mechanism. Combined outputs of attention
for all speakers are passed through a single BLSTM layer and
converted into a set of per-frame probabilities of each speaker
presence/absence.

We used both CHiME-6 and a 800h subset of the VoxCeleb
data for training the TS-VAD model for Track 2. Besides, we
used the probabilities obtained from the TS-VAD model trained
only on CHiME-6 data in Track 1 as soft-activity (see sec-
tion 1.1) to improve GSS performance. We also found that

• TS-VAD works better (1% abs. DER reduction) on top
of 2-minute long block WPE dereverberation;

• Fusion of probabilities from several TS-VAD model fur-
ther improves diarization;

• Best ASR results (up to 2.5% abs. WER improvement)
are obtained when using diarization with larger False
Alarm rate instead of the best DER diarization.

The results of the successive application of the approaches
described above are presented in Table 2.

2.3. ASR over diarization segments

The good diarization results obtained with TS-VAD made it
possible to apply front-end technologies that we used success-
fully in Track 1, namely WPE + GSS + MVDR, for Track 2 as
well. As in Track 1, this leads to a substantial improvement of
WER. Moreover, the ASR performance gap between TS-VAD
and manual segmentation is rather small. The recognition re-
sults over the TS-VAD segments are presented in Table 3.

Dev WER% Eval WER%

Kaldi baseline 84.25 77.94
Best single AM 44.89 47.67
Fusion 41.56 44.49

Lattice rescoring + Fusion 39.56 42.67
Table 3: ASR results for Track 2
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