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Abstract
This paper summarizes the Toshiba entry for Track 1 of CHiME
2020 challenge, corresponding to the multi-array speech recog-
nition task. The system is based on conventional acoustic mod-
eling (AM), where phonetic targets are tied to features at the
frame-level, and it consists of a combination of convolutional
neural networks (CNNs) (with or without residual connections)
and factorized time delay neural networks (TDNNFs). We also
explored several enhancement strategies for the train and test
data, speaker normalization and discriminative training. Re-
sults are reported using the provided 3-gram language model
(3G LM) and after rescoring with a neural network language
model (RNN LM). Following system combination, the submit-
ted system achieves a performance of 35.89% and 37.54% word
error rate (WER) using 3G LM on the development (DEV) and
evaluation (EVAL) sets, respectively. Using the RNN LM, our
system achieves a performance of 34.83% and 36.83% WER on
DEV and EVAL, respectively. Proposed system was ranked 4th
in both the constrained and the unconstrained language model
subtracks.

1. Introduction
The Toshiba entry for Track 1 of CHiME 2020 challenge [1]
is presented here. The goal is on building an automatic speech
recognition (ASR) system where the speaker diarization infor-
mation is provided. Track 1 is a follow-up of the multi-array
track from CHiME 2018 challenge [2], and is ranked into two
categories (A or B), based on the type of acoustic modeling ar-
chitecture and the type of language model used. The system
presented here uses conventional acoustic models trained with
phonetic targets tied to features at frame-level. Results are pre-
sented using both the baseline 3-gram language model as well
as rescoring with a neural network LM. The sections below de-
scribe the system’s components.

The CHiME 2020 corpus is the same as the CHiME 2018
(CHiME-5) one, and consists of twenty dinner party recordings
(sessions) lasting about two hours each. There are 16 training
sessions, 2 sessions for development and 2 sessions for evalu-
ation. A session has four participants and is divided into three
parts (kitchen, dining room and living room), corresponding to
the location from where the audio data is collected. Conversa-
tions in each location are captured by: (a) two distant 4-channel
input microphone arrays, and (b) four in-ear (worn, one per par-
ticipant) binaural microphones. The worn microphone record-
ings were used to annotate the data. There are six distant micro-
phone arrays (24-channels) and four in-ear stereo microphones
(8-channels) in total. None of the devices were synchronized
during recording, therefore a correlation based approach was
initially employed to align data [2]. In addition to the synchro-
nization problem, speech is also corrupted by noise, reverbera-
tion and overlapping speakers [3].

A more accurate array synchronization method was pro-
vided for CHiME 2020 [1]. Also, the baseline acoustic model
and enhancement pipeline were updated to match the state-of-
the-art results reported in [4–6]. The factorized time delay neu-
ral networks [7], the multi-channel Guided Source Separation
(GSS) enhancement [8], and cleaning up both the training and
test datasets [6] were proven to be quite effective in reducing
the word error rate.

The rest of the paper is structured as follows. Section 2
summarizes the speech enhancement strategies used for our sys-
tem, Section 3 describes the proposed acoustic model topology
and training strategy, Section 4 presents the proposed neural
network based language model, and Section 5 shows the recog-
nition accuracies of our final ASR system. Finally, the paper is
concluded in Section 6.

2. Speech enhancement
Dereverberation and source separation were applied to process
the speech signals for our system. Both are briefly summarized
below.

2.1. Dereverberation

Reverberation pose a significant challenge for distant-talking
speech recognition and requires dedicated solutions to alleviate
its effects [9]. It has been shown that reducing the late reverber-
ation (impulse response shortening) prior to feature extraction
improves considerably the recognition accuracy. The multiple
input multiple output (N inputs and N outputs) version of the
Weighted Prediction Error (WPE) method was used to achieve
room impulse shortening for our submission [10, 11]1.

2.2. Guided Source Separation

GSS is a blind source separation method aimed to reduce the ef-
fect of speaker overlap that was initially proposed for CHiME-
5 [8]. Due to its success in reducing the word error rate for
CHiME-5 [5,6], the vanilla (one-stage) multi-array GSS imple-
mentation was released with the baseline system for CHiME-6
Track 1. Block diagram of one-stage GSS is depicted in Fig. 1
(switch K=1), and is concisely described next.

First, the time-frequency (T-F) representation of N-channel
mixture of reverberated overlapped speech is obtained using the
Short Term Fourier Transform (STFT), and the late reverber-
ation is removed by means of WPE. Then, the parameters of
a spatial mixture model are estimated using the Expectation
Maximization (EM) algorithm, and posterior probabilities of
a speaker being active are computed. The posteriors (speaker
masks) are employed to estimate spatial covariance matrices
of target and interference speakers, and then derive the steer-

1http://github.com/fgnt/nara_wpe
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ing vector of a Minimum Variance Distortionless Response
(MVDR) beamformer [12]. Audio waveform is reconstructed
using the inverse STFT and the overlap-and-add technique.

For the one-stage GSS, the EM algorithm is initialized us-
ing the speaker diarization information inferred from the origi-
nal CHiME-6 transcription. Previous experiments have shown,
however, that refining the EM initialization using voice activity
detection information provided by an ASR system can signif-
icantly improve the recognition accuracy, as described in [6].
Therefore, the test data are firstly enhanced using GSS (K=1 in
Fig. 1), then they are transcribed using a pre-trained ASR sys-
tem, and, finally, the silence information are used to improve the
EM initialization for a second run of GSS (K=2 in Fig. 1). This
implementation flavour is referred to as two-stage GSS. We have
used both one- and two-stage GSS flavours in our final system.
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Figure 1: Block diagram of one- and two-stage Guided Source
Separation enhancement.

3. Acoustic models
3.1. Baseline acoustic model

The baseline acoustic model for CHiME-6 consists of 14 factor-
ized time delay neural network [7] layers, and is trained using
unprocessed worn (W) and array (U) speech segments. Simu-
lated reverberated array speech (U.rvb) and 3-fold speed pertur-
bation (SP) are used to augment the training data [4, 13]. The
acoustic features are 40-dim MFCC and 100-dim i-vectors [14],
and the training is conducted in KALDI using the LF-MMI cri-
terion [15]. During testing, speech is enhanced using one-stage
GSS and the i-vectors are refined using a 2-pass decoding ap-
proach. For more details, the reader is referred to [1] 2.

3.2. Proposed acoustic models

Several acoustic models were combined to form our final sys-
tem. They contrasted in both network topology and training
strategy.

Concerning the network architecture, the topologies we
explored consisted of CNN (with and without residual con-
nections) and TDNNF blocks, as depicted in Figs. 2 and 3.
In Fig. 2, BN and FC denote batch normalization and fully-
connected layers, respectively, k is the kernel size, s is the stride
in time and frequency, d, b and o are dimensions of FC layers.
The linear layers factorized under a semi-orthogonal constraint
are marked with an ‘∗’ (e.g., Fig. 2c), and the corresponding
dimension (b) is referred to as the bottleneck dimension [7].

Three distinct topologies are proposed in Fig. 3. One con-
sists of 9 CNN (without residual connections) and 10 TDNNF
layers, another one is based on 40 ResNet CNN layers, and the
third one is formed of 40 ResNet CNN layers followed by 9

2http://github.com/kaldi-asr/kaldi/tree/
master/egs/chime6/s5_track1

Table 1: Configuration of AMs used in this paper.

Enh. in train Topology SID DT VTLN 2-pass hrs
W+U+U.rvb TDNNF(15) Base yes 1407
W+U.WPE CNN-TDNNF(19) A no 802

W+U.GSS12

CNN-TDNNF(18) B no 102

CNN-TDNNF(19)

C X no 309
D X X no 309
E yes 309
F X yes 309
G X yes 309
H X X yes 309

RESNET(40)
I yes 309
J X yes 309
K X no 309

RESNET-TDNNF(49) L no 309
M X no 309

Acronyms:
2-pass 2-pass decoding for i-vector refinement
CNN Convolutional Neural Network (without residual connections)
DT Discriminative Training
RESNET CNN with residual connections
SID System ID
TDNNF Factorized Time Delay Neural Network
U array data
U.GSS12 Guided Source Separation (12-ch) enhanced U data
U.rvb simulated reverberated U data
U.WPE dereverberated U data using WPE [11]
VTLN Vocal Tract Length Normalization
W worn uprocessed data

TDNNF layers. An additional CNN-TDNNF topology (not de-
picted in Fig. 3) was also employed, whose structure is similar
with that in Fig. 3a, but had the first CNN layer removed. The
dropout rate was set to zero for all experiments, and n refers to
the context size.

Concerning the training strategy, all models were trained
with unprocessed worn and enhanced array data, and the signal
processing was either WPE dereverberation [11] or one-stage
multi-channel GSS (12-channel input, GSS12). Two-stage GSS
with 12 and/or 24-channel input was used during test, as in [6].
Models were initially trained using LF-MMI criterion, and were
later refined using discriminative training (DT) [16]. Vocal tract
length normalization (VTLN) [17] was also applied, with warp
factors estimated for each speaker, room and session. I-vector
models were trained on both unwarped and warped acoustic fea-
tures. Furthermore, the test i-vectors were refined using 2-pass
decoding.

Table 1 shows the configuration of all models used for the
final system. As shown later, the best performance is achieved
with discriminative training, VTLN normalization and 2-pass
decoding. 64-dim FBANK and 100-dim i-vectors were the
acoustic features used for all models but system ID (SID) B,
where 64-dim FBANK were combined with 10-dim excitation
based features in [18]. The excitation based features are de-
signed to partially recover the glottal source information lost
during FBANK computation. In term of data augmentation, ex-
cept SID B, all models in Table 1 used 3-fold speed perturba-
tion. Training and decoding were performed in KALDI. Last
column of Table 1 presents the total amount of training data (in
hours) for each acoustic model. Notably, most acoustic models
were trained with roughly 300 hrs of data, which is a fraction of
that used to train the baseline model (about 1400 hrs).

http://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5_track1
http://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5_track1
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Figure 2: Structure of basic network blocks of proposed acoustic models. See Section 3.2 for details.
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Figure 3: Proposed acoustic model topologies.



4. Neural network language model
The proposed model consisted of two Long-Short Term Mem-
ory (LSTM) recurrent neural network [19] and three TDNN lay-
ers connected as in Fig. 4. LSTM layers had a cell dimension of
800, with a recurrent projection of 256 and a non-recurrent pro-
jection of 128; the word embedding dimension was 800. The
left and right context size (n) of TDNNs is specified in Fig. 4.
Parameters were chosen to reduce the perplexity on the devel-
opment set of CHiME-6 (Table 2).

Output layer

LSTM

LSTM

TDNN
n=(-1,0)

Input layer

TDNN
n=(-3,0)

TDNN
n=(-3,0)

Figure 4: Proposed TDNN-LSTM language model.

Table 2: Perplexity of baseline and proposed language models.

Language model Perplexity
Baseline (3-gram) 154.2
Proposed (TDNN-LSTM) 140.5

5. System combination
The individual and combined performances of systems in Ta-
ble 1 were assessed for the constrained (Category A) and uncon-
strained (Category B) language models. Results are presented
below.

5.1. Results Category A

Performance of individual systems described in Table 1 using
the baseline 3-gram language model is presented in Table 3.
Performance of baseline CHiME 2020 Track 1 system is also
included for comparison purposes; ∗∗note that Base numbers
reported in Table 3 are with one-stage GSS12 enhanced test data
(without ASR refinement).

From the table, one can observe a significant ASR accu-
racy improvement relative to the Base model for our systems.
This result is remarkable since our models were trained us-
ing a fraction of the data necessary to prepare the baseline
model (see last column in Table 1). The best accuracy is
achieved by the RESNET topology, and performing discrim-
inative training (SID J) and vocal tract length normalization
(SID K) helps reduce the WER further. Our experiments have

Table 3: Performance in %WER of individual components of
final system for 3G LM.

SID DEV EVAL
GSS12+ASR GSS24+ASR GSS12+ASR GSS24+ASR

Base 51.39∗∗ - 51.38∗∗ -
A 45.81 44.79 46.09 46.78
B 44.88 - 49.48 -
C 42.47 42.15 44.28 45.03
D 41.74 41.73 43.84 44.92
E 42.67 42.28 44.78 45.11
F 41.78 41.49 44.21 44.72
G 41.66 41.13 44.11 44.66
H 41.27 41.34 43.71 44.80
I 41.34 41.06 42.42 43.09
J 41.07 40.55 41.84 42.94
K 40.86 40.53 42.41 43.12
L 42.03 - 42.78 -
M 41.71 - 42.86 -

A-M 35.89 37.54

Table 4: Performance in %WER of individual components of
final system for RNN LM.

SID DEV EVAL
GSS12+ASR GSS24+ASR GSS12+ASR GSS24+ASR

A 44.64 43.42 44.62 45.38
B 43.39 - 45.66 -
C 41.01 40.71 43.07 43.92
D 40.53 40.56 42.96 43.74
E 41.42 40.93 42.85 43.74
F 40.74 40.38 42.84 43.73
G 40.57 39.99 42.74 43.43
H 40.10 40.02 42.70 43.99
I 40.29 40.04 41.84 42.29
J 40.11 39.76 41.00 42.19
K 39.94 39.62 41.42 42.27
L 41.14 - 42.05 -
M 40.85 - 42.16 -

A-M 34.83 36.83

shown that performing lattice combination using GSS12+ASR
and GSS24+ASR streams lead to significant WER improve-
ments, therefore both streams have been included in the submis-
sion system. Lattice combination of all systems and streams in
Table 3 yielded 35.89% and 37.54% WER on DEV and EVAL,
respectively. This accuracy was ranked 4th in the official Cate-
gory A results from the challenge.

5.2. Results Category B

Similar results for the RNN language model are depicted in Ta-
ble 4. Best recognition accuracy was achieved by the RESNET
architecture with vocal tract length normalization (SID K).
Combining lattices of all systems and streams yielded 34.83%
and 36.83% WER on DEV and EVAL, respectively. This accu-
racy was ranked 4th in the official Category B results from the
challenge.

5.3. Discussion

A session and room breakdown performance of the final sys-
tems for the 3-gram and RNN language models is provided in
Table 5. Notably, except for session S09, the KITCHEN condi-



tion of all other sessions had much worse performance than the
DINING and LIVING conditions. The performance gap can be
attributed to the specific noise characteristics and levels found
in the kitchen environment, or may be due to the higher rate
of speaker movement during the food preparation phase of the
dinner party. This issue will be addressed in our future work.

Table 5: Detailed % WER performance of the final system.

Session Room 3G LM RNN LM
DEV EVAL DEV EVAL

S02
DINING 39.84 - 38.46 -

KITCHEN 41.67 - 40.65 -
LIVING 32.65 - 31.83 -

S09
DINING 36.03 - 34.47 -

KITCHEN 33.63 - 32.62 -
LIVING 31.14 - 30.14 -

S01
DINING - 31.31 - 30.56

KITCHEN - 53.03 - 52.80
LIVING - 43.38 - 42.80

S21
DINING - 29.91 - 28.64

KITCHEN - 45.45 - 44.99
LIVING - 30.16 - 29.25

Overall 35.89 37.54 34.83 36.83

6. Conclusion
In this paper we have summarized the Toshiba entry for Track 1
of CHiME 2020 Challenge. A conventional HMM-DNN ASR
system was proposed, consisting of a combination of CNN and
TDNNF acoustic model topologies, two-stage multi-array GSS
enhancement, speaker normalization using VTLN and second
pass discriminative training. Results were reported using the 3-
gram LM provided by the organizers and after rescoring with an
RNN LM. For the 3-gram LM, our system has achieved 35.89%
and 37.54% WER on the development and evaluation sets, re-
spectively. For the RNN LM, our system has achieved 34.83%
and 36.83% WER on the development and evaluation sets, re-
spectively. The system was ranked 4th in both the constrained
and the unconstrained language model subtracks.
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