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Abstract

In this paper, we present Cloudwalk Technology and Xia-
men Universitys joint effort for CHiME-6 Challenge to recog-
nize highly-overlapped and very natural conversational speech
in dinner party environment. We explored DNN-HMM hybrid
system for track 1 rank A and end-to-end model for track 1 rank
B. In addition, we also explore different data augmentation ap-
proaches and front-end speech enhancement methods to further
improve the accuracy of speech recognition systems. We in-
vestigated vairous algorithms in speech diarization systems for
track 2. Our system came up with 41.65% WER for develop-
ment set and 40.24%WER for evaluation set in rank A, as well
as 40.25% WER for development set and 39.62%WER for eval-
uation in rank B for track 1. For track 2 category A, results are
57.72%DER, 61.85%JER and 77.5%WER for development set,
as well as 65.36%DER, 67.32%JER, 72.52%WER for evalua-
tion sets.

Index Terms: speech recognition, CHiME-6 challenge, dinner
party

1. Introduction

CHiME-6 features two tracks: multiple-array speech recogni-
tion (track 1) and multiple-array diarization with recognition
(track 2). We participate in both catergory A and B for track 1
and catergorty A for track 2. We are going to demonstrate our
front-end system in Section 2.1, back-end system in Setion 2.2,
some efforts on language model for catergory B in Section 2.3
and experiments for track 2 in Section 3.

Figure 1: System Overview

2. Track1

In this section, we will introduce front-end enhancement, data
augementation, the modification on acoustic model training and
lattice combination for track1. A simple overview of our system

based on official language modeling is illustrated from Figure
1.

2.1. Front-end Speech Enhancement

Our front-end framework is based on dereverberation, guided
source separation and mask-based beamforming.

2.1.1. Deverberation

Weighted prediction error WPE [1] has been proved that it can
effectvely improve real-life speech recognition performance,
we employed multi-channel WPE [2] [1] to do speech dereve-
beration. We used nara wpe [1] with same configurations
as baseline system for dereverberation which are 512 sample
points for frame length, 128 sample points for frameshift, 10
frames for filter taps and 2 frames delay. Moreover, we have
tried coherent-to-diffuse power ratio(CDR) [3] for dereverbera-
tion due to source signals were deeply reverberated. We mod-
ifed CDR to satisfy 4 channels singals. Table 1 showed that
WPE was out performed than CDR.

Dereverberation Eval(WER)

Wpe(Baseline) 52.04%
Cdr 54.19%

Table 1: Recognition rate comparison between WPE and CDR

2.1.2. Guided Source Separation

Complex Angular Central Gaussian Mixture Model(cACGMM)
has been explored that it can significantly solve the guided
source separation problem [4] [5].

However, due to unmarked silence between words, the
annotions provided from datasets are not perfectlly precised.
Hence, we followed up frame-level alignment for GSS from
well-trained ASR model [6] [7]. The model we used for al-
ingment is trained.

In our experiment, the training data was augmented with
12mics and 24mics GSS. For evaluations, the GSS was set with
5 iterations, and realignded by pre-trained ASR model. We used
different training data combinations to train models with same
structure, as shown in table 2.



Alignment from model Train data

x Augmented worn + array +beamformit
y Augmented worn + gss + array
z GSS

Table 2: Alignments from different models

Realginments from well-trained ASR models can at least
enhance 1.5% absolute WER in our systems. The results in
table 3 illustrates alignment from model trained with augmented
gss worn and array data provided the best enhancement, and the
alignment from model trained with augmented worn, array and
beamformit data is better than the alignment from model trained
with pure gss is because the former model has better variety.

Model GSS realignment from Model WER

MULTI-CNN-TDNNF-ATT-specaug

None 45.11
x 43.82
y 43.78
z 43.86

Table 3: Best single model gss realignment results

2.1.3. Beamforming

Given the estimated mask from Guided Source Separation,
Minimum Variance Distortionless Response beamformer with
speaker-aware complex Gaussian mixture models has been ap-
plied. We used the baseline cgmm-mvdr for pb chime5 tool [8].

2.2. Back-end ASR For RankA

2.2.1. Acoustic Model

We experimented various network structures including tdnnf,
residual cnn, fsmn and self-attention for hybird system. For
the final result, minimum Bayesian risk lattice combination is
applied and the lattices are from these acoustic models.

• Res-cnn-tdnnf-self-attention: 6-layers convolution
neural network with skip connections every two layers,
15-layer tdnnf and a time-restricted self-attention block.

• Res-cnn-fsmn: 6-layers convolution neural network
with skip connections every two layers, 10-layer pyra-
midal fsmn block.

• Spec-aug-cnn-tdnnf: Spec augmentation is applied in
front of 6-layers CNN block, followed by 15-layer tdnnf.

• Multi-cnn-tdnnf-self-attention: Three 6-layers cnn
blocks with different Convolution kernel size simultane-
ously concate by 15-layer tdnnf and time-restricted self-
attention block.

In the experiments, 40-dim fbank and 120-dim i-vector features
are fixed as the network input. Acoustic model structures are
one of the most influential factors for the recognition tasks.
Thus, we trained several AM structures and some of them out
perform the Kaldi baseline TDNNF model in table 4. MULTI-
CNN-TDNNF-ATTENTION with spec augment shows the su-
perior result.

MODEL Eval (WER)

TDNNF-baseline 52.04%
CNN-FSMN-ATT-1c 49.96%

CNN-(14)TDNNF-ATT 49.64%
CNN-(13)TDNNF-ATT 49.84%

MULTI-CNN-TDNNF-ATT-specaug 48.41%
TDNN-RBiLSTM 53.92%

Table 4: Variant AM architectures comparison

During training, LF-MMI and LF-bMMI are used. It is found
that half-LF-MMI-half-LF-bMMI training criterion reaches the
best result as shown in Figure 5

Training criterion Eval (WER)

LF-MMI 52.04%
LF-bMMI 52.35%
Hybrid* 51.87%

Table 5: Various training criterion results with Kaldi baseline setup

2.2.2. Neural-Network Alignment

Due to the complicated representation of audio data, GMM
could be less inaccurate for phonetic alignment. Thus, we
trained a chain model without subsampling for alignment which
has shown improvement.

2.2.3. Data Augmentation

Since worn data is relatively clean, we simulated reverberated
speech from the worn data by utilizing room impulse responses
(RIR) and point-source noises. In ad- dition, we performed
weighted prediction error (WPE), beam- forming, and hybrid
speech enhancement on all training data for data augmentation.
Finally, speed and volume perturbation- s were utilized on all
training data. During Training, we also used SpecAugment to
improve the robustness of our speech recognitions system.In
addition, 24 and 12 micorphones GSS has been employed to
augment training data. Two types of data are prepared, worn
with array and guided speech separated training data, and pure
guided speech separated training data.

The models are trained in two ways: one is pure GSS train-
ing data, and the other one combines worn, augmented worn
and GSS data to further improve the training diversity. Table
6 illustrates the results of these two training methods. How-
ever, beamforming data makes degradation for results. It is in-
ferred that beamforming method makes use of multi mic arrays
which is not compatible with the test data generated by separa-
tion method.

Model Data Combinations Eval (WER)

Model A
Augmented worn + array + GSS 45.53%
Pure GSS 47.06%
Augmented worn + array + beamforming + GSS 51.04%

Model B
Augmented worn + array + GSS 45.87%
Pure GSS 46.84%
Augmented worn + array + beamforming + GSS 50.82%

Model C Augmented worn + array + GSS 45.59%
Pure GSS 46.69%

Model D Augmented worn + array + GSS 45.11%
Pure GSS 46.47%

Table 6: Data combination brings more diversity in training process



2.2.4. Other Tricks

• Strict cleanup: After decoding with training data, sev-
eral utterances were found not match to the transcrip-
tions, we remove part of them by high WER;

• Chain-model tree leaves: Various senones as modelling
units are experimented, and found 5000 better than the
baseline.

In hybrid ASR system, Phonetic alignment is critical to train-
ing. Since chain model performs best result and the robustness
of neural network model. However, chain model output frame
labels with sub-sampling of 3. To align the training data with it,
a chain model without sub-sampling is used designed. 1.21%
absolute improvement is received.

Ctiterion Type

LF-MMI 1
LF-bMMI 2

Hybrid 3

Data Type

Augmented worn + array + GSS A
Pure GSS B

Table 7 and Table 8:Training criterion and training data setup

The models are trained in two ways: one is pure GSS train-
ing data, and the other one combines worn, augmented worn
and GSS data to further improve the training diversity, figure
9 illustrates the results of these two training methods. How-
ever, beamforming data makes degradation for results. It is in-
ferred that beamforming method makes use of multi mic arrays
which is not compatible with the test data generated by separa-
tion method.
In the final, we ensemble some of the best models using
MBR(Minimum Bayesian Risk) decoding. The experiments in-
dicate that not combining the best trained single models will not
give the best ensemble result, but the models with rich training
and data diversity do.

MODEL Criterion DATA Eval (WER)

4 AMs 1 A 42.15%
4 AMs 1 B 43.54%
4 AMs 2 A 42.67%
4 AMs 3 A 41.34%
6 AMs 1 A+B 40.89%
6 AMs 3 A 41.15%
6 AMs 3 A+B 40.67%
8 AMs 3 A+B 40.24%

Table 9: Different ensemble combination and their results

2.3. RankB

2.3.1. Language model rescore

In rank B, 4-stage pipeline are used. First, the lattice generated
from HCLG.fst are rescored through a 4-gram language model.
Then, a pruned lstm-based lattice rescore is applied. Finally, the
lattice will be sent to an n-best rescore model.

2.3.2. End-to-End ASR

We introduce the CTC loss function to assist Transformer in
learning the speech-to-text alignment. A RNNLM is trained for
decoding stage. The system layout of E2E can be reviewed in
figure 2.

Figure 2: E2E System Overview

• E2E data augmentation:The data augmentaion is sim-
iliar as rank A. For better accuracy of the end-to-end
speech recognition systems, we exploited three front-end
speech enhancement algo- rithms on the development set
and evaluation set of the CHiME- 6 corpus: delay-and-
sum beamforming, NN-based MVDR beamforming and
hybrid speech enhancement.

• Recognition details: For the multi-channel end-to-end
ASR system(ME2E), BLSTMP Neural Networks were
used for the dereverberation subnetwork and beam-
forming subnetwork to estimate the as- sociated masks.
Transformer architecture was used as the attention-based
ASR module of ME2E. The training steps of ME2E were
divided into three stages. First, we used the worn data to
train a Transformer ASR model. Second, worn data and
array data were used to train the dereverberation subnet-
work and beamforming subnetwork based on MSE and
SI-SNR objectives using the worn data as the training
label. Finally, we trained the Transformer ASR model
and the two speech en- hancement networks jointly with
worn data and array data.

The result of E2E system is shown in table 11.

3. Track2

The challenge speech contains multiple speakers, so we need
to know the start and end time of each speaker, otherwise the
performance of ASR will deteriorate sharply. This is exactly
the goal of diarization. In this section, we will introduce the
acoustic features, embedding extractors, and clustering algo-
rithms used in diarization for track2.

3.1. Acoustic features

In diarization we mainly use three different configurations of
acoustic features.

3.1.1. Mel frequency cepstral coefficient features

For the first mel frequency cepstral coefficient (MFCC) feature
extraction configuration, all audios are converted to the cepstral
features of 23-dimensional MFCC with a frame-length of 25ms
and a frame shift of 10ms. The second configuration differs
only in the choice of dimensions, using 40 dimensions.



3.1.2. Filterbank features

The filter bank (FB) feature vectors include 40 dimensional FBs
from the raw signal with a 25ms frame-length.

3.2. Embedding extractors

We have considered two different embedding extractors. The
first embedding extractor we used is the official pretrained
diarization model. X-vector [9] DNN is trained with the
VoxCeleb [10, 11] data and PLDA model is trained with the
CHiME-6 data. We use the same data to train the second model,
with a different architecture and feature. In order to make
speaker embedding have better distinction between classes, we
chose the factorized time delay deep neural network (F-TDNN)
[12] architecture. It has excellent performance in speaker recog-
nition tasks. Based on experience, we choose to use 40-FB with
more detailed information to train this model. The architec-
ture configuration is shown in Table 10. The embedding are
extracted as the feature of different speakers used for clustering
algorithms.

Layer Layer Type Context Context Skip conn. Size Inter
factor1 factor2 from layer size

1 TDNN-ReLu t-2:t+2 512
2 F-TDNN-ReLu t-1,t t,t+1 640 180
3 F-TDNN-ReLu t t 640 180
4 F-TDNN-ReLu t-2,t t,t+2 640 180
5 F-TDNN-ReLu t t 3 640 180
6 F-TDNN-ReLu t-3,t t,t+3 640 180
7 F-TDNN-ReLu t t 2,4,6 640 180
8 F-TDNN-ReLu t-3,t t,t+3 640 180
9 F-TDNN-ReLu t t 640 180

10 F-TDNN-ReLu t-3,t t,t+3 5,7,9 640 180
11 F-TDNN-ReLu t t 6,8,10 640 180
12 Dense-ReLU t t 1024
13 Pooling(mean+stddev) full-seq 2048
14 Dense-ReLU 512
15 Dense-ReLU 512
16 Dense-Softmax N.spks

Table 10: F-tdnn architecture

3.3. Clustering algorithms

In addition to the agglomerative hierarchical clustering (AHC)
[13] used by the official baseline, we also explored the spectral
clustering used in [14]. The number of speakers in each sen-
tence in ChiME6 is confirmed to be 4, so the threshold is also
determined accordingly.

3.4. VB Refinement

After segment level clustering, because embedding segments
are too quantized, we use Variational-Bayesian(VB) refinement
[15] to refine the mark boundaries. The parameters are re-
learned with VoxCeleb data using 23-MFCC. All the diarization
results are shown in Table 12.

4. Results

The results of hybird system for Track 1 rank A are 41.65
WER% and 40.24%WER in development sets and evaluation,
along with 56.9% and 50.6% in dev and eval for End-to-End
system in rank B track 1.

Track Rank Dev (WER %) Eval (WER %)
1 A 41.65 40.24
1 B 40.25 39.62
1 B 56.9 50.6

Table 11: Track 1 submitted results

The results of track 2 category A are 57.72%DER, 61.85%JER
and 77.5%WER for development set and 65.36%DER,
67.32%JER, 72.52%WER for evaluation sets.

Baseline Development Set Evaluation Set

DER% JER% WER% DER% JER% WER%
Category A 57.72 61.85 77.52 65.36 67.32 72.52

Table 12: Track 2 submitted results

5. Conclusions

In this paper,we did various investigations on both track 1 and
track 2 that all giving a better results than baseline. Our team
started Chime-6 at Feburary, we think more experiments can be
done as well as better improvements can be achieve if we start
it earlier.
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