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Abstract
This paper describes the Academia Sinica systems for the tracks
of multiple-array ASR (Track 1) and diarization+ASR (Track2)
in the 6th CHiME Challenge. For Track 1, we take a differ-
ent approach from the official baseline to preprocess the Kinect
data and derive the state-level alignment. In addition, we de-
velop two LF-MMI-based acoustic models, the discriminative
autoencoders (DcAE) and the feature-enhanced acoustic model
(FEAM), which consider feature-level regularization and en-
hancement, respectively. For Track 2, we propose a new CNN-
based training scheme, which develops speech representations
by expanding the data into a set of segments, each of which
contains more than one speaker. In training, a soft label is ap-
plied to each segment based on the speaker occupation ratio,
and the standard cross entropy loss is used. In the evaluation
set, our best system for Track 1 (Category A) achieves 46.8%
WER, slightly better than the baseline performance (51.4%).
For Track 2 (Category A), our system is also superior to the
baseline while using the same TDNN-based acoustic model.
The DER, JER, and WER are relatively improved by 13.24%,
12.60%, and 6.57%, respectively.

1. System Descriptions
We describe our systems for both tracks in the 6th CHiME Chal-
lenge (CHiME-6). For details of the CHiME-6 datasets and
tasks, please refer to the official website1 and [1].

1.1. Track 1: ASR

1.1.1. Front-end data processing

The training process of our ASR system is divided into two
parts, front-end data processing and back-end acoustic model-
ing. As shown in the upper part of Figure 1, we first used the
worn set and the Kinect set to train the GMMs. The worn set
comes from the L and R channels in the worn microphone data,
and is combined with the simulated reverberant speech using
RIRs and point-source noises [2]. In the baseline program2,
the Kinect set consists of 400k utterances randomly selected
from all Kinect channels without any enhancement. Our Kinect
set, instead, comes from 1) all the first channel utterances of
the Kinect data and 2) the corresponding enhanced utterances,
where all channels with time annotations were passed to the
front-end of weighted prediction error (WPE), guided source
separation (GSS), and BeamformIt (BF) [3, 4, 5].

1https://chimechallenge.github.io/chime6/
overview.html

2https://github.com/kaldi-asr/kaldi/tree/
master/egs/chime6/s5_track1/
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Figure 1: Flowchart of data preparation in our system, where
“U” and “ch” denote “Kinect” and “channel”, respectively.
The dotted line path is the method of forming the Kinect set in
the baseline program.

Following the model structure and training steps of the
baseline program2, we first created the phone alignment for the
worn set based on the GMMs, and performed a data cleanup
procedure. We then created the alignment and lattice for the
complete training set for the NN-based acoustic models (AMs)
by copying the alignment of the corresponding L channel in the
worn set, i.e., the alignment expansion in [6].

1.1.2. Back-end acoustic modeling

To train the NN-based AMs, the training set was augmented by
two data augmentation techniques, namely speed perturbation
and volume perturbation. Bandpass perturbation [6] was not
successful in our experiments.

The architectures of our two newly proposed AMs are de-
picted in Figure 2. The first AM is discriminative autoencoders
(DcAEs) [7], which attempts to effectively separate the phonetic
part (P-Code) and the residual part (R-Code) in the embedding
space. In this challenge, we not only corrected several minor
mistakes in our previous implementation, but also upgraded its
structure from “nnet3” to “chain”. In this way, the LF-MMI cri-
terion, the cross-entropy loss, and the mean squared error can
be optimized simultaneously by Kaldi’s training procedures.

The second AM is the feature-enhanced acoustic model
(FEAM) as shown in Figure 2 (b). In FEAM-U, “-U” means
that the U-Net is used. There are also two kinds of output layers,
one is the phone-state scores for the LF-MMI criterion and the
cross-entropy loss, and the other is the generated acoustic fea-
tures. The acoustic features generated by the feature-enhanced
networks (FENs) are expected to be close to the corresponding
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Figure 2: Our NN-based acoustic models. In (a), FC denotes
the fully-connected layers, and U-Net is used in DcAE-U but not
in DcAE-B. In (b), FEN denotes the feature-enhanced networks
using the TDNN layers.

worn features during training. That is, we assume the worn set
is almost clean, so that FENs can play a role in further enhanc-
ing the Kinect features.

1.1.3. Objective function

The objective functions for training the DcAE-B, DcAE-U, and
FEAM-U models involve the reconstruction or restoration error
of acoustic features (MFCCs) and the phoneme-aware criteria,
including the cross-entropy (XENT) and maximum mutual in-
formation (MMI). The error is to be minimized while the crite-
ria are to be maximized during training.

Suppose the model M contains a deterministic mapping
f(·), which is responsible for observation reconstruction (for
DcAE) or restoration (for FEAM), respectively. Given a set
of data X and the corresponding reference data Y ready to go

through the inference-generation process X f→ Y , the average
reconstruction or restoration error, denoted by Lr , is given by

Lr(X ) =
1

|X |
∑

x∈X ,y∈Y

‖f(x)− y‖22, (1)

where ‖ · ‖22 is the 2-norm operator and |X | is the sample or
mini-batch size. f(x) corresponds to the “Output (MFCCs)”
blocks in Figure 2. Note that, in DcAE, Y is equivalent to X ,
which covers the MFCC vectors of the full training set shown in
Figure 1. However, in FEAM-U, Y denotes the corresponding
MFCC vectors of the worn set, which serves as the target to be
restored from the MFCC vectors in X .

There are two kinds of phoneme-aware criteria related to
the “Output (states)” blocks in Figure 2. The first one, denoted
byFxent, is the expected cross-entropy between the distribution
represented by the reference labels and the predicted distribu-
tion. The second one, denoted by Fmmi, is the MMI criterion
between the distributions of the true word sequence and pre-
dicted word sequence. For the general description of LF-MMI
training, also named as “chain” modeling in the Kaldi Koolkit3,
readers can refer to [8, 9].

By combining the acoustic feature reconstruction or
restoration error, the phoneme-aware cross-entropy, and the
MMI criterion, the objective function to be minimized becomes

−Fmmi − 5×Fxent + αLr. (2)
3https://kaldi-asr.org/doc/chain.html
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Figure 3: Illustration of the traditional training scheme and our
proposed training scheme with respect to the speaker distribu-
tion in a mini-batch. Each sample (segment) contains 8 acoustic
frames and the mini-batch size is 3.

The weight of Fxent is set to 5 following most recipes for
“chain” modeling. α is an adjustable weight for increasing or
decreasing the regularization strength of Lr . It was set to 10−5

in this work. Actually, for the NN-based acoustic model as a
whole, Fxent and Lr can be regarded as two regularizers.

1.1.4. Recognition

In summary, we used five AMs, including DcAE-B, DcAE-U,
FEAM-U, TDNN-F, and RBiLSTM [10, 6, 2]. All of them
were trained on the “chain” structure using the Kaldi Toolkit,
with the input combining 40-dimensional MFCCs and the 100-
dimensional i-vector.

In the decoding phase, all Kinect channels were processed
by WPE, GSS, and BF to form a single-channel utterance. Fi-
nally, we used the N-best ROVER method to combine the re-
sults from different AMs [11].

1.2. Tack 2: Diarization + ASR

For Track 2, we basically followed the baseline program4, in-
cluding the constitution of training set, dereverberation proce-
dures, speech activity detection (SAD), and the back-end of
PLDA and AHC. In the baseline program, BF is used to com-
bine and enhance all channels of each Kinect into one channel.
However, in our system, some failures for unknown reasons oc-
curred when BF was performed on all channels of all Kinects.
Therefore, we tried all possible combinations of channels and
selected the set that contains the most compatible channels.

A typical speaker diarization system is composed of two
components, a speaker model and a back-end processor, work-
ing for extraction and clustering of speaker representations,
respectively. The main weakness of most speaker models
might be the incompetence to discriminate short-duration seg-
ments, e.g., less than 2 seconds, and the ineffectiveness to ex-
tract a reliable speaker embedding when a segment contains
more than one speaker. Speaker representation is crucial to
speaker diarization especially when segment clustering is per-
formed. Therefore, we propose a new training scheme to
develop speaker representations by randomly augmenting the
training data with segments that contain more than one speaker.
That is, we attempt to produce one or more “speaker change” in
each mini-batch while training. Thereinto, a soft label was ap-
plied to each segment (sample) based on the speaker occupation
ratio and the standard cross entropy loss was used. Take Figure

4https://github.com/kaldi-asr/kaldi/tree/
master/egs/chime6/s5_track2/
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Table 1: The architecture and specifications of ResNet-34,
where res1 to res5 denote 5 ResNet-based layers, pooling
denotes an average pooling layer, and B, T , D, and C repre-
sent the batch size, temporal length, feature dimensionality, and
number of training speakers, respectively.

Layer Feature Size Downsample # Blocks

input B × 1× T ×D - -
conv B × 16× T ×D False -
res1 B × 16× T ×D False 3

res2 B × 32× T
2
× D

2
True 4

res3 B × 64× T
4
× D

4
True 6

res4 B × 128× T
8
× D

8
True 3

res5 B × 256× T
16

× D
16

True 3
pooling B × 256 - -
linear1 B × 256 - -
linear2 B × C - -

3 for example, if the ground truths of samples 1 and 2 in the
traditional case are [1, 0, 0] and [0, 1, 0], they can be [3/8, 5/8,
0] and [3/8, 2/8, 3/8], respectively, in our proposed case. The
ratio of the number of multi-speaker segments to the number of
single-speaker segments is about 13.64%.

To build a speaker model, we employed the CNN-based
ResNet-34 architecture, where the feature kind, training hyper-
parameters, specification of layers, aggregation type, and loss
function are almost the same as the baseline system described in
[12]. As shown in Table 1, the only difference is that we added
one additional res-layer with 256 channels and 3 blocks to the
original model in order to extract the 256-dimensional speaker
embeddings. The VoxCeleb-2 Corpus was used for training the
speaker model. The best model checkpoint was determined by
JERs of the CHiME-6 development set.

The initial speaker label for each segment was given
through clustering the speaker embeddings. Resegmentation
was subsequently performed with variational Bayes (VB) di-
arization [13], where a 2048-component UBM-GMM with di-
agonal covariance matrices and 400 eigenvoice bases were
trained in advance with 30-dimensional MFCCs. Moreover, the
initial speaker label was used for initialization in the VB di-
arization model. The tunable parameters, such as the minimum
duration, loop probability, downsampling factor, and maximum
number of iteration, were determined by the development set,
and were set to 1, 0.998, 1, and 1, respectively.

2. Experiment Results
First, we evaluate the ASR experiments (Track 1). The results
for the development and evaluation sets are presented in Ta-
ble 2 (cf. the columns marked as “Track 1”). From the table,
we have the following observations. First, our TDNN-F system
outperforms the baseline system. Both systems are based on the
same TDNN-F model architecture and have the same training
strategy, but the front-end data processing is different. Com-
pared with the front-end data processing used in the baseline
system, our front-end data processing, using WPE, GSS, and
BF on the Kinect training data, produces relative reductions of
2.34% and 3.89% in WER for the development and evaluation
sets, respectively. Second, our DcAE-B and DcAE-U models
obtain comparable results to the TDNN-F model. In addition,
DcAE-U seems to be superior to DcAE-B, but the difference
is small. Third, our FEAM-U model that adopts joint training
for feature enhancement and acoustic modeling does not per-

Table 2: Average WERs (%) for Track 1 and Track 2 (Category
A only).

Track 1 Track 2

Model Dev Eval Dev Eval

Baseline 51.32 51.36 84.25 77.94

TDNN-F 50.23 49.53 75.89 73.68
RBiLSTM 52.23 50.38 76.90 73.39
DcAE-B 50.30 49.80 75.90 73.66
DcAE-U 49.95 49.96 75.78 73.54
FEAM-U 53.81 53.05 78.70 76.20

ROVER 47.28 46.82 74.36 71.56

Table 3: Results for Track 2. The acoustic models are the same.

Dev Eval

Model DER JER WER DER JER WER

Baseline 63.42 70.83 84.25 68.20 72.54 77.94

Proposed 56.77 60.62 75.57 59.17 63.40 72.82

form as expected. The reason is worth further studying in the
future. Fourth, the N-best ROVER method is quite successful.
Overall, compared with the baseline system, our system obtain
relative reductions of 7.87% and 8.84% in WER for the devel-
opment and evaluation sets, respectively. The detailed WERs
for Track 1 with respect to different acoustic models and test en-
vironments (Kinect recordings in different locations) are shown
in Table 4.

Next, we evaluate the effectiveness of our speaker diariza-
tion method. We applied the TDNN-F model of the base-
line system to the baseline speaker diarization results and our
speaker diarization results. That is, the same TDNN-F model
was used in the experiment. As shown in Table 3, our speaker
diarization system is superior to the baseline speaker diarization
system. For the evaluation set, the DER and JER are relatively
reduced by 13.24% and 12.60%, respectively. In addition, our
speaker diarization results also yield better ASR performance.
The WER is relatively reduced by 6.57% for the evaluation set.

Finally, we jointly evaluate our speaker diarization and
ASR systems (Track 2). The results are shown in the right
columns of Table 2. It is clear that based on better speaker
diarization results, all our single ASR model systems (includ-
ing TDNN-F, RBiLSTM, DcAE-B, DcAE-U, and FEAM-U)
are superior to the baseline system. In addition, The ROVER-
based fusion system can relatively reduce the WER by 8.19%
for the evaluation set (from 77.94% to 71.56%). In summary,
for the evaluation set of Track 2, the WER of the baseline sys-
tem is 77.94%, which is reduced to 72.82% when our speaker
diarization system is applied. The WER is further reduced to
71.56% when our complete (speaker diarization plus ASR) sys-
tem is applied.

3. Conclusions and Future Work
Although the combination of our front-end data processing,
speaker diarization, and acoustic modeling (with assistance of
ROVER) methods outperforms the baseline system, there are
still several problems that need to be solved:

1. There is a need to consider using multiple-stage GSS,
where preliminary ASR is used to rectify silence align-



Table 4: Detailed WERs (%) for Track 1 (only Category A) with
respect to different acoustic models and test environments.

Model Session Kitchen Dining Living Overall

TDNN-F
Dev S02 52.87 55.16 45.93 50.23S09 52.09 49.42 47.48

Eval S01 42.17 63.90 57.95 49.53S21 42.44 57.03 42.35

DcAE-B
Dev S02 53.69 55.29 46.11 50.30S09 52.01 48.92 47.19

Eval S01 42.20 64.78 57.40 49.80S21 42.70 57.51 43.13

DcAE-U
Dev S02 53.06 55.28 46.41 49.95S09 50.52 48.22 46.82

Eval S01 42.63 64.49 57.14 49.96S21 44.04 57.78 42.61

RBiLSTM
Dev S02 56.38 57.75 48.23 52.23S09 53.67 50.27 47.92

Eval S01 43.40 64.24 57.93 50.38S21 44.32 57.33 43.62

FEAM-U
Dev S02 57.33 59.64 50.01 53.81S09 54.8 51.74 49.71

Eval S01 45.59 68.81 60.29 53.05S21 45.40 61.68 45.44

ROVER
Dev S02 49.97 52.48 43.29 47.28S09 49.04 44.77 45.36

Eval S01 40.58 61.21 53.37 46.82S21 40.13 53.99 39.67

ments.

2. Kinect data selection is necessary because not all chan-
nels contribute to the performance of ASR.

3. The recently widely used acoustic models suitable for
tasks containing dozens of hours of training speech are
worth investigating, such as CNN-TDNN-F.

4. Some back-end processing techniques can be imple-
mented, such as state-level minimum Bayes risk (sMBR)
[14] training and MBR decoding with lattice combina-
tion [15].

5. Speaker diarization techniques that can better handle
overlapping speech segments are needed.

6. There is still much room for improvement in the perfor-
mance of the FEAM-U model. We will try to find out the
best settings of the model structure and parameters.
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