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Abstract
The paper presents IOA’s submission to the 6th CHiME Chal-
lenge. Our systems include the front-end enhancement combin-
ing deep learning-based and probabilistic model-based source
separation, training data augmentation, acoustic modeling with
multi-channel branches and system fusion. Tested on the evalu-
ation sets, our best system for Track 1 Category A/B has yielded
35.11%/34.53% word error rate (WER) respectively, with an
absolute reduction of 16.18%/16.76% compared with the base-
line model.

1. System overview
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Figure 1: The (a) training and (b) testing phase of our systems.

This report describes our contribution to the 6th CHiME
challenge (CHiME-6), which provides speech data recorded in
the real party scenario via microphone arrays and presents ex-
treme speech overlap and unrestrained speaking styles [1][2].
Our systems are designed for Track 1 Category A/B. Figure 1
shows the framework of the training and testing procedures of
our systems. It consists 5 parts, including deep learning-based
single-channel speech separation (SS), multi-channel speech
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enhancement with guided source separation (GSS), training
data augmentation, acoustic modeling and system fusion.

In the training phase, we first train 1-stage SS models for
each speaker in each session (SS1), a universal speech enhance-
ment model (SE). The separated audios serve as a part of train-
ing database. Then a 2-stage GSS is initialized with the speaker
and noise masks, further refined by ASR alignments. 3 types of
acoustic models with multi-channel branches are trained with
the dataset augmented with additional data.

In the testing phase, we train 2-stage speech separation
models (SS2). A 3-stage GSS is deployed to perform multi-
channel speech separation. The final results are obtained with
posterior probability fusion.

The detailed descriptions of the systems and the word error
rate (WER) results on the development (Dev.) and evaluation
(Eval.) sets can be found in the following sections.

2. Front-end processing
2.1. Deep learning-based single channel source separation
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Figure 2: The (a) SS1/2-spk and (b) SS2-sess model for single
channel speaker separation.

The deep learning-based single-channel source separation
is to generate source masks and embeddings, which are pro-
vided to GSS module. The SS1-spk and SS2-spk models are
trained for each speaker in each session. The SE models are
training with progressive learning, similar with [3].

The SS2-sess models serve as unified models to separate
speakers as well as to extract source embeddings for each ses-
sion. The shallow layers receive the short-time Fourier trans-
form (STFT) and output the unit-norm speaker embeddings.
The high layers additionally utilize the speaker condition to out-
put masks. The model is trained to optimize the multi-task loss
of affinity matrix [4] and phase-sensitive masks [5] (Figure 2),
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L = Lm + αLe, (3)

where s is the target speaker index, m̂t,f,s, mt,f,s, et,f ∈
RD×1 and bt,f ∈ {0, 1}S×1 represent the estimated PSM, the
oracle PSM, the estimated speaker embedding and the speaker
membership indicator for each time-frequency (T-F) bin, T and
F are the total number of frames and frequency bins in the sam-
ple, D and S are the embedding dimension and the number of
speakers, α is the loss balance factor.

In our experiments, the SS1-spk models utilize non-
overlapping utterances. The SS2-spk and SS2-sess models ad-
ditionally use audios separated by SS1-spk and enhanced by
1-stage GSS. We set D = 20 and α = 1.0.

2.2. Multi-channel guided source separation
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Figure 3: The frame work of 3-stage GSS. The number repre-
sents the data flow in the 1,2,3(∗) stages individually.

We have developed the multi-channel separation based on
the GSS [6]. The overall framework of systems is given in
Figure 3. All the 24 channels audios are dereverbed with
the weighted prediction error (WPE) [7]. SS and SE masks
combined with annotations and alignments are served as an
initialization of the complex angular central Gaussian model
(CACGMM),

a(t, s) = (1− β)aannot(t, s) + βaalign(t, s), (4)

pinit(t, f, s) = m̂(t, f, s)a(t, s), (5)

where β = 0.6 is the confidence factor of the alignments,
aannot and aalign are frame-level source presence probabil-
ity from the annotation and ASR alignment, pinit(t, f, s) is the
initialization mask. The interpolation is aimed to alleviate the
inaccuracy of the alignment caused by the ASR transcription.
After iterations, the masks representing the target speaker and
the inference are used to do beamforming.

We briefly describe the 3 stages:

• The 1st stage uses m̂(t, f, s) to initialize CACGMM,
generates ASR alignment by decoding the enhanced au-
dios.

• The 2nd stage uses pinit(t, f, s) to initialize CACGMM,
generates signal-to-noise (SNR) information of each
channel.

• The 3rd stage selects channels, uses pinit(t, f, s) to ini-
tialize CACGMM, output enhanced audios.

• The 3∗rd stage differs by using von Mises-Fisher
(vMF)-CACGMM model [8] with embeddings from
SS2-sess and selecting channels with the fusion of SNR-
and coherency-based [9] methods.

Each stage’s performance of the front-end processing is pre-
sented in Table 1.

Table 1: The Front-end results on the Dev. with CNN-TDNNF
trained with WORN and ENH data [10].

Stage Baseline 1 2 3 3∗

WER(%) 45.42 43.02 42.62 42.14 41.75

The 2-stage GSS, which is adopted in the training phase
to generate enough data, consists of the 1st and 3rd stages.
The channel selection is in random to output 7-fold data, named
ENH in Figure 1.

3. Acoustic models
3.1. Training data and settings

The whole training set contains worn headset data (WORN),
far-field microphone array data (FAR), simulated data (SIMU),
multi-channel enhanced data (ENH), totally 4 parts. The FAR
data is made up of the original far-filed audios and single-
channel audios enhanced by SS1 models. The SIMU data is
generated by convolving the WORN data with image-based
simulated room impulse responses (RIRs) and estimated RIRs
calculated by the far and worn audio pairs. Moreover, it is ob-
served that the short utterance combination can benefit the per-
formance of the acoustic models. We have created 2 training
sets, a small one with only WORN and ENH data, a large one
with all mentioned data. The details of the training set are listed
in Table 2.

Table 2: The details of the training set, where 1-fold data is
around 40 hours and 120 hours after 3-fold speed and volume
perturbation.

Data Description Fold

WORN Headset microphone audios 2/3
FAR Original far-field and SS1 separated audios 6

SIMU Simulated far-field audios 6
ENH Augmented enhanced audios 7

Small set WORN+ENH 9
Large set WORN+FAR+SIMU+ENH 22

3.2. Networks

Totally 15 acoustic models are trained for the final fusion. They
are derived from CNN-TDNNF trained on the small set, CNN-
TDNN-BLSTM trained on the large set and CNN-BLSTM
trained on the large set (Table 3). CNN-BLSTM differs from
CNN-TDNN-BLSTM by utilizing deeper CNN layers with-
out interleaving TDNN and BLSTM layers. A multi-channel
branch is introduced with CNN architectures, whose input is log
power spectral (LPS) and magnitude squared coherence (MSC)
[11]. The branch is trained in 2 ways, partial update and full
update [12]. It was noticed that the multi-channel networks usu-
ally outperformed the single channel ones, audios from 3∗-stage
GSS usually outperformed those from 3-stage.

The results of the acoustic model ensemble are plotted in
Table 4. The fusion adopts the weighted average of log posterior
probability inside each type of acoustic models. The final fusion
was conducted across different types of acoustic models, and 3-
stage and 3∗-stage front-end.



Table 3: The architectures and performance of our acoustic models.

Architecture Dataset Training settings 3-stage GSS 3*-stage GSS
Dev./Eval. WER(%) Dev./Eval. WER(%)

CNN-TDNNF Small SpecAug 38.73/40.83 38.45/40.85
+Multichannel-CNN Small Partial update 38.10/39.16 37.95/38.98
+Multichannel-CNN-BLSTM Small Partial update 38.93/39.73 38.70/39.77

CNN-TDNNF-BLSTM Small SpecAug 38.41/40.04 37.90/39.95
+Multichannel-CNN Small Partial update 37.98/38.42 37.76/38.27

CNN-TDNNF-attention Small SpecAug 39.72/42.09 39.33/41.83

CNN-TDNN-BLSTM Large - 38.15/40.10 37.95/39.81
CNN-TDNN-BRLSTM Large - 38.19/40.26 37.89/40.16
+Multichannel-CNN Large Full update 38.27/40.42 38.02/40.16
+Multichannel-CNN Small Partial update 37.57/38.60 37.29/38.72

CNN-TDNN-BRLSTM-2 Large SpecAug 42.15/44.03 41.92/43.70

CNN-BLSTM Large SpecAug 36.60/38.63 35.92/38.30
+Multichannel-CNN Small Partial update 37.47/38.45 37.17/38.30

CNN-BLSTM-deltaLayer Large SpecAug 37.69/39.41 37.30/39.27
CNN-BLSTM-resnet Large SpecAug 35.86/37.97 35.54/37.95

Table 4: The ensemble results of different types of acoustic models and front-end processing.

Acoustic model type (#) 3-stage GSS 3∗-stage GSS
Dev./Eval. WER(%) Dev./Eval. WER(%)

CNN-TDNNF (3) 36.71/38.79 36.25/38.46
CNN-TDNNF + Multi-channel (3) 36.23/37.13 36.07/37.05

CNN-TDNN-BLSTM (3) 36.63/38.86 36.38/38.52
CNN-TDNN-BLSTM + Multi-channel (2) 37.02/38.32 36.67/38.28

CNN-BLSTM (3)
34.88/36.37 34.48/36.36CNN-BLSTM + Multi-channel (1)

Fusion with weight 0.05 : 0.15 : 0.1 : 0.1 : 0.6 34.18/35.67 33.76/35.56

Fusion with weight 0.4 : 0.6 33.55/35.11

RNN rescore 32.92/34.53

4. Conclusion

We present the performance details in Table 5, which are tuned
on the Dev. set and tested on the Eval. set. For Category B, a
language model based on the recurrent neural network (RNN)
is trained for rescore. It yields around 0.6% improvement for
both Dev. and Eval. sets.

Table 5: The WERs (%) of our best systems for Category A and
B.

Category Session Dining Kitchen Living Ave

A

S02 38.30 38.50 31.59
33.55S09 32.25 30.07 29.23

S01 29.58 48.49 42.72
35.11S21 29.76 39.66 28.60

B

S02 37.51 38.02 31.06
32.92S09 31.54 29.69 28.11

S01 28.83 48.61 41.64
34.53S21 29.14 39.39 28.03
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