
Towards a speaker diarization system
for the CHiME 2020 dinner party transcription

Christoph Boeddeker1, Tobias Cord-Landwehr1, Jens Heitkaemper1, Cătălin Zorilă2,
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Abstract
In this work, we present our joint efforts on Track 2 of the
CHiME 6 challenge, where two to three hours long sessions of
a dinner party are to be transcribed without the use of start and
end time annotations for each utterance during evaluation. The
first contribution introduces an extension to an earlier proposed
neural speaker diarization system by additionally incorporating
spatial features, but violates the challenge rules by using ora-
cle information about the speaker permutation in different seg-
ments. However, the results are promising and warrant future
investigations. The second contribution follows the challenge
guidelines and combines our system presented during the last
challenge with the Track 2 baseline diarization system. Dif-
ferent acoustic models with system combination are tested on
the enhanced data and deliver significant performance improve-
ments over the baseline, both with the baseline and a modified
language model.
Index Terms: speaker diarization, speech recognition, permu-
tation invariant training

1. Introduction
Automatic Speech Recognition (ASR) using neural networks
has shown impressive results on multiple databases. However,
most systems still underperform in the present of reverberation
and overlapping speech. One example for a scenario with such
adversarial conditions are dinner party or meeting scenarios.
The CHiME 5 challenge [1] presented a database of real audio
recordings with a high amount of overlapping speech, rever-
beration and noise. During and after the challenge, a number
of contributions presented systems which were able to achieve
large improvements in recognition accuracy over the baseline
system even in these adverse conditions [2, 3, 4, 5, 6].

However, all of these approaches relied on the provided
speaker activity information, which may not be available in real
world applications. Therefore, recent publications have focused
on developing diarization techniques to enable robust ASR on
continuous speech databases without speaker activity informa-
tion [7, 8]. Most of the efforts to improve diarization rely
on neural networks and can be divided into two main groups.
The first approach uses data with a large variety of speakers to
train a speaker embedding extractor which is applied on multi
talker data during testing to identify the active speakers [9, 10].
During testing, the signal is divided into multiple segments on
which a speaker embedding is extracted and a clustering al-
gorithm is used to assign a speaker to each segment. Here, a
mismatch between the training and evaluation data can be miti-
gated through domain adaptation algorithms, data augmentation

and sufficiently diverse training data [11]. The second approach
trains a neural network based diarization system directly on the
multi talker signals [12, 13]. During the DIHARD II challenge
mainly diarization systems of the first group have been tested
on the CHiME 5 database with varying results [14].

The second track of the CHiME 6 challenge disallowed
the use of the oracle speaker activity information during testing
[15]. Without the activity information no utterance boundaries
are defined, so that the system input consists of two-hour ses-
sions of speech by four speakers from changing positions in up
to three rooms. Therefore, the baseline for the CHiME 6 chal-
lenge includes a diarization system, which follows the first ap-
proach mentioned above, to compensate for the lack of speaker
activity information compared to the CHiME 5 challenge [15].

In this paper, we propose to use a Permutation Invariant
Training (PIT)-Neural Speaker Diarization (NSD) system [12]
as part of the front-end for an ASR system on the CHiME 6
database, which is inspired by the aforementioned second ap-
proach. Additionally, an adjustment of our Guided Source Sep-
aration (GSS) system proposed for the CHiME 5 challenge [4]
is presented, which allows the use of the diarization output in-
stead of the oracle speaker activity information.

The PIT-NSD is applied independently to segments of the
two-hour session which may lead to a permutation of the speak-
ers between segments. To solve this permutation one may use
speaker embeddings extracted on single speaker chunks. How-
ever, in this work we concentrated on the NSD system and used
oracle information about the speaker permutations, leaving the
implementation of a permutation solver for future work.

To improve upon the accuracy of the diarization estimation
a novel spatial feature relying on information gained from a spa-
tial mixture model is presented.

Since the proposed diarization system uses an oracle per-
mutation solver, it was not part of the challenge submission.
For the submission, we adjusted the GSS front-end to accept the
output of the baseline diarization system to show results con-
forming to the challenge regulations. Further experiments are
done with different acoustic models and acoustic model combi-
nation to improve upon the recognition results.

The remainder of this paper is structured as follows. First,
the CHiME 6 database is introduced in Section 2 and a short
system overview is presented in Section 3. In Section 4 the pro-
posed diarization and the novel spatial features are discussed
and in Section 5 the modification to the GSS front-end are ex-
plained. Section 6 gives an overview over the back-end used in
this work. We close the paper with some evaluation in Section
7 and a short conclusion.



2. Database
This section gives a short overview over the CHiME 6 data. The
database consists of recordings of several dinner parties by 4
speakers, where each party consists of around 2 hours of audio.
During the parties the speakers prepare food, dine and socialize.
The three activities take place in different rooms and each lasts
for at least 30 minutes. The signals were captured by six Mi-
crosoft Kinect microphone arrays with four audio channels each
and two arrays per room. Additionally, each speaker is recorded
by binaural in-ear microphones. However, the captured in-ear
audio includes both overlapping speaker and noise so that no
clean, parallel recording of the microphone array data is avail-
able to train a neural network-based source separation system in
the usual supervised training setup. The training dataset com-
prises a total of 40 hours of audio from 32 speakers, while the
development and evaluation set consist of five hours from 8
speakers each. All participants were encouraged to speak natu-
rally, so that more than 20% of the recorded time the speakers
overlapped.

3. System Overview
A common approach to estimate the transcription for multiple
speakers in an unsegmented, long audio stream (e.g. 2h long
audio) is to utilise different system components to solve the
task step by step [15]. The first component splits a session in
active and inactive chunks for each speaker. Such component
is called a diarization system. It estimates the start and end
times of each utterance and speaker, where an utterance may
range from a single word to one or more sentences. Depend-
ing on the architecture, a diarization system can either handle
overlapping speech and identify start and end times of each in-
volved speaker’s speech or it ignores segments with concurrent
speakers. The diarization is followed by a speech enhancement
and/or extraction component. While the speech enhancement
can in principle also be applied before the diarization system,
it is more common that the speech extraction uses the diariza-
tion information to identify which speaker to extract. Finally,
an ASR system takes the segments where a single speaker is
active (and extracted) as input and predicts the transcription for
the utterance.

4. Diarization
4.1. CHiME 6 baseline

The baseline diarization system for CHiME 6 contains the
following components [15]. First, a Speech Activity Detec-
tor (SAD) Neural Network (NN) evaluates each frame for
speech/voice activity. As a postprocessor, a simple Viterbi de-
coding on an HMM estimates the onsets and offsets of speech
activity predicted by the network. The segments with active
speech are then divided into smaller subsegments, on each of
which another neural network extracts x-vectors, i.e., speaker
embeddings. This is followed by Agglomerative Hierarchical
Clustering (AHC) of the embedding vectors using a similarity
measure derived from Probabilistic Linear Discriminant Analy-
sis (PLDA), until the number of clusters matches the number of
speakers (four in the CHiME scenario). The speaker labels for
each cluster are then given by the cluster assignments.

The x-vector extractor itself has been trained on a large ex-
ternal database (VoxCeleb [16]). Note that the clustering nat-
urally solves the problem of re-identifying a previously active
speaker after he/she has been silent for some time. The main
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Figure 1: Permutation invariant training (PIT) for a neural
speaker diarization system. Inspired from [12, Fig. 1]. The
forced alignment are produced from an ASR system. They mean
here the refined human annotations [5].

drawback of this approach is, however, that it cannot handle
overlapping speech. If multiple talkers are active at a time, the
system will at most identify one speaker correctly.

4.2. PIT Neural Speaker Diarization

An alternative approach to the diarization system in Section 4.1
is to formulate the diarization problem as a multi-class labelling
problem, as proposed in [12] and visualized in Fig. 1. This
is particularly interesting in the context of CHiME 6, because
this NSD naturally handles overlapped speech and because in
CHiME 6 the total number of speakers (4) is fixed and known
in advance. This single system replaces the SAD estimator, the
speaker embedding calculation and the clustering of the base-
line diarization system.

To train the NN we use a PIT objective [17, 18], i.e., com-
pute the loss for each permutation of target speaker activity label
and network output, and back-propagate the minimum loss. In
contrast to the original PIT loss used for training source separa-
tion systems, the system here does not require parallel data for
training since the targets only consist of activity information.
The activity information is estimated using an acoustic model
to calculate a forced alignment for each speaker and setting the
speaker to active for all frames assigned to non-silence senones.

For each speaker the start and end times of an utterance (or
word) have to be derived from the speech presence probability
estimated by the neural network. In [12] this was solved with a
threshold and a median filter. Here, a simple Viterbi decoding
on an HMM (as used in the SAD baseline system) is applied in-
dependently to the speech presence probability of each speaker
to obtain utterance start and end times.

4.3. Spatial features

The NSD system tends to overfit when the training data has a
low number of speakers. In the CHiME 6 training set there are
only 32 distinct speakers, which is far too few to generalize well
to unseen speakers in the test set1.

1For comparison, the baseline diarization system is trained on more
that 7000 speakers from VoxCeleb



To improve the performance and generalizability we inves-
tigated options to add spatial information to the system. It helps
discriminating speakers, and since a spatial feature is not di-
rectly linked to a specific speaker it may also improve general-
ization for training data with a low number of speakers.

Spatial information has shown to improve the results for
source separation on various databases [19, 20]. Common fea-
tures are the inter-channel phase differences (IPD) [19], how-
ever, the angles between the speakers relative to the array, i.e.,
their spatial resolution, is quite small and our preliminary ex-
periments showed that even some spatial mixture models had
problems utilizing the spatial information on this dataset [4].
For this reason, the use of IPD features was discarded.

Here, we propose to use a Spatial Mixture Model
(SMM), the complex angular central Gaussian mixture model
(cACGMM) [21] to be specific, to obtain spatial features. This
mixture model has shown to achieve strong results as part of
the GSS system [4] when a guide (human diarization output) is
available.

The parameters of a SMM are estimated with the EM algo-
rithm. The output of the Expectation step, the posterior proba-
bilities of each speaker being present in a certain time-frequency
bin, can be used as masks to extract the speakers. However, in
CHiME 6 we observed that the SMM has problems to reliably
estimate the masks for all speakers2. So instead of using the
masks to extract the speakers we propose to use the masks to ex-
tract simple features as additional input for the NSD system. To
be specific, we calculated the average power across all channels
and frequencies of the observation weighted with the posterior
mask to be used as spatial features.

5. Guided Source Separation
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Figure 2: Block diagram of the GSS system introduced during
the CHiME-5 challenge.

The enhancement system presented in [4] relies on the human
annotations of start and end times for each speaker that are not
allowed to be used during Track 2 of the CHiME 6 challenge.
However, the system can still be applied under the new chal-
lenge rules if the annotation information is replaced with the
output of a diarization system as shown in Fig. 2 3.

The first step in the enhancement system is dereverberation,
which is performed with the Weighted Prediction Error (WPE)
algorithm [22, 23, 24]. Source extraction (SE) is done with
a Minimum Variance Distortionless Response (MVDR) beam-
formier in the formulation presented in [25], using the reference
channel estimation as in [26]. Further the beamformer output is

2Note: The SMM in the GSS system [4] used the human annotations
to tackle this problem

3We published the modification for the GSS system on
https://github.com/fgnt/pb chime5 .

processed by blind analytic normalization (BAN) postfilter [27]
to reduce speech distortions.

To compute the beamformer coefficients the spatial covari-
ance matrices of speech and distortions have to be estimated.
To this end, the SMM (i.e., cACGMM [21]) estimates poste-
rior probability masks for each speaker and noise. It should
be mentioned that the SMM uses the diarization output twice,
firstly, as initialization of the Expectation Maximization (EM),
and secondly, as a constraint for the posterior probability masks.
Interestingly, the SMM relies on the diarization output as guide
to improve the mask estimation, while the diarization system
employs spatial features in turn computed with the help of a
SMM.

In contrast to the original system in [4], the temporal con-
text for WPE and the SMM parameter estimation (see Fig. 2)
is reduced from ±15 s to ±10 s and the number of channels is
reduced from 24 channels to 12 channels (only the outer mi-
crophones of each array are used). These changes were made
to reduce the computational load, and have only small effects
on the Word Error Rate (WER). A further change, compared to
[4] is that the power spectral density matrix for the beamformer
estimation is calculated on the masked observation without ad-
ditional context, as proposed in [5].

6. Acoustic and language models
Three distinct acoustic models (AMs) architectures were used
in our experiments. One was the baseline AM provided by the
challenge organizers consisting of a 14-layer Factorized Time
Delay Neural Network (TDNNF) topology. This model was
trained with unprocessed and artificially reverberated speech
using a combination of 40-dim MFCCs and 100-dim i-vectors.
Second acoustic model was formed of 10 convolutional neu-
ral network (CNN) layers followed by 9 TDNNF layers (CNN-
TDNNF), and the third model consisted of 40-layer CNNs with
residual connections (RESNET).

The training set of the latter two models contained un-
processed worn and enhanced array data, augmented by 3-
fold speed perturbation. The speech enhancement was either
dereverberation (WPE) or GSS. The training was performed in
KALDI using LF-MMI criterion [28], and the acoustic features
were 64-dim FBANK combined with 100-dim i-vectors. Dis-
criminative training (DT) was also applied on top of previously
trained LF-MMI models.

Both the baseline 3-gram language model (LM) provided
with the challenge and an RNN LM consisting of 3 TDNN and
2 LSTM layers were used for scoring. For more details about
the AMs and the RNN LM see [29].

7. Experiments
This section is divided into two parts. The first part describes
the results with the PIT-NSD diarization system and an oracle
permutation solver using the baseline acoustic model. In the
second part, the diarization system is replaced with the base-
line diarization to assure challenge rule conformity. Addition-
ally, multiple acoustic models are compared and combined to
reduce the WER. All systems are compared in terms of both
WER and DER. The DER is calculated either with non-silent
alignments obtained by an HMM-GMM acoustic model or hu-
man annotations as ground truth. We present the DER for both
types of ground truth activity information since the non-silent
alignments are the official challenge ground truth whereas our
experiments have shown a better correlation between the WER



Table 1: Experiments with NSD supported by spatial features. Diarization Error Rate (DER) is averaged across DEV and EVAL.
“Annotation” and “Alignment” refer to the DER targets that changed during the challenge. Oracle segment permutation information
is assumed.

Network Mel bins SMM
spatial
features

Dropout DER WER in %

TRAIN DEV+EVAL DEV EVAL

Annotation Alignment

Baseline2 - - - - 60.87 64.74 77.49 71.92

2 BLSTM 80 No No 34.28 60.09 58.56 72.68 71.25
2 BLSTM 80 Yes No 2.52 53.75 68.84 70.05 69.50
2 BLSTM 80 Yes 0.25 2.79 52.71 65.80 68.65 67.43
1 BLSTM 80 Yes 0.25 5.11 50.99 66.54 65.65 66.60
1 BLSTM 24 Yes 0.25 7.03 48.89 64.65 63.82 63.47

Oracle - - - - 0 38.16 47.67 49.54

and DER calculated from human annotations.

7.1. Limitations and open problems of NSD on CHiME 6

Ideally, the NSD system should operate on the complete ses-
sion of 2 to 3 hours to estimate the diarization information.
This is difficult, first because the memory consumption it too
high and, second, because the information about the past that
can be stored in a recurrent network node is limited. There-
fore, the session is first split into segments of fixed length. This,
however, introduces a segment permutation problem, because
the NN does not output the same speaker on the same index
for every segment. In this work, we do not address the per-
mutation problem between segments and use an oracle permu-
tation solver instead. To ease the task of the (future) permu-
tation solver we used relatively large segments of 40 seconds
length. However, the spatial features would benefit from even
longer segments since the spatial mixture model requires the
prior knowledge of the number of active speaker which is set
to four for all segments. Longer segments increase the likeli-
hood that all speakers are active for at least some time during
the segment. Additionally, the PIT-NSD tends to overfit to the
training data in case of a low number of speakers during train-
ing, which is the case for the CHiME 6 data. Despite these
problems, the NSD system has the potential to achieve strong
diarization estimates without an external database for training a
speaker embedding extractor, as will be shown in the next sec-
tion.

7.2. NSD and spatial features

In Table 1 experimental results with the NSD system are shown.
The network architecture is adapted from common u-PIT ar-
chitectures [30] and consists of either one or two Bidirectional
Long Short-Term Memory (BLSTM) layers followed by two
dense layers.

The input are Mel features concatenated with the spatial
features described in Section 4.3. During training, VTLP [31]
is applied to the Mel features to reduce network overfitting.

The DER for the TRAIN data is calculated against the train-
ing target, which are the forced alignments of an ASR system,
similar to the provided alignment for DEV and EVAL.

The first line in Table 1 represents the challenge baseline
system. In the second line, the results for the NSD system with-

out spatial features are shown which achieves 34.28% DER on
the training data and 60.09% DER on DEV+EVAL. The re-
sults indicate that the model overfits to the training data as ex-
pected. Including the spatial features from the SMM reduces
the DER to 2.52% on train and 53.75% on DEV+EVAL. For
the training data the spatial information allows the system to
achieve close to perfect results, but the results on DEV+EVAL
are far from perfect, asking for more techniques to reduce over-
fitting. Therefore, both a reduction in parameters by using only
one BLSTM layer or reducing the number of Mel features and
the application of dropout are examined in further experiments.
All these changes lead to an improvement in DER on both the
DEV and EVAL datasets, while slightly increasing the DER on
the TRAIN set, thus indicating a small reduction in overfitting.
However, the gap between the diarization results on the TRAIN
and EVAL/DEV set is still quite large, which asks for further
improvements, e.g., applying more advanced data augmentation
techniques to reduce overfitting. All WER results on the DEV
and EVAL mirror the improvements observed for the DER. The
last line in Table 1 uses the diarization provided by the chal-
lenge organizers for Track 1. This result is included to assess
how much performance is lost by the real diarization system.

7.3. Challenge Contribution

The results shown in the previous section are not in line with
the challenge rules. Therefore, the PIT-NSD system is replaced
with the baseline diarization described in Section 4.1. In Ta-
ble 2 the second line represents the result of this system with
the baseline acoustic model. The GSS system already leads to
an improvement of approximately 3% compared to the baseline
front-end for both DEV and EVAL data. Table 2 includes ad-
ditional results with the acoustic models described in Section 6
and offers a comparison between an Recurrent Neural Network
(RNN) based language model and the baseline 3-gram model.
The RNN language model outperforms the 3-gram model in all
cases. The last line presents the results combining the lattices of
all six proposed acoustic models. Both the results with the base-
line and the RNN-based language model achieve the fourth best
WER in their respective category during the CHiME 6 chal-
lenge with 68.96% and 68.45% WER. In Table 3 the results
submitted to the challenge are displayed.



Table 2: DEV and EVAL ASR results for Track 2 using baseline diarization system.

Enh. in test ASR WER in %

Training Data Acoustic model 3G-LM RNN-LM

Topology DT DEV EVAL DEV EVAL

WPE+BFIt unproc. & reverb. TDNNF(14) 81.92 76.37 - -

GSS

unproc. & reverb. TDNNF(14) 78.12 73.06 77.71 72.47

worn & WPE CNN-TDNNF(19) 76.44 72.04 75.93 70.80

worn & GSS CNN-TDNNF(19) 74.74 71.27 74.15 70.42

worn & GSS CNN-TDNNF(19) X 74.67 70.55 74.23 70.07

worn & GSS RESNET(40) 74.05 70.47 73.79 70.05

worn & GSS RESNET(40) X 74.73 70.14 74.42 69.64

Latt.Comb. 73.50 68.96 73.05 68.45

8. Conclusion
In this paper we presented a neural speaker diarization system
for the CHiME 6 database. Our first contribution was using the
posterior masks from a spatial mixture model as features. The
additional features lead to a large improvement in DER on the
training set but only to a smaller reduction in DER on the DEV
and EVAL data. Presented results rely on oracle information
which will be replaced by a permutation solver in our future
work.

The second contribution was a modification of the GSS sys-
tem to enable the use of a diarization output as alternative to
the human annotations for the second track of CHiME 6. Fur-
thermore, we tested multiple acoustic models and experimented
with model combination and an RNN language model. Our best
system achieved the fourth best WER for the CHiME-6 Track 2
in the ranking for both constrained and unconstrained language
models.

Table 3: Submitted results. DER and Jaccard Error Rate (JER)
are calculated against the provided alignments based targets.

Development set Evaluation set

DER JER WER DER JER WER

Cat. A 62.61 70.95 73.50 66.93 71.44 68.96

Cat. B 62.61 70.95 73.05 66.93 71.44 68.45
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[29] C. Zorilă, M. Li, D. Hayakawa, M. Liu, N. Ding, and R. Doddi-
patla, “Toshiba’s speech recognition system for the CHiME 2020
Challenge,” in Proc. of CHiME-6 Workshop, 2020.

[30] M. Kolbæk, D. Yu, Z.-H. Tan, and J. Jensen, “Multitalker speech
separation with utterance-level permutation invariant training of
deep recurrent neural networks,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 25, no. 10, pp. 1901–
1913, 2017.

[31] N. Jaitly and G. E. Hinton, “Vocal tract length perturbation (vtlp)
improves speech recognition,” in Proc. ICML Workshop on Deep
Learning for Audio, Speech and Language, vol. 117, 2013.


