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Abstract
This paper summarizes the Toshiba entry for Track 1 of CHiME
2020 challenge, corresponding to the multi-array speech recog-
nition task. The system is based on conventional acoustic mod-
eling (AM), where phonetic targets are tied to features at the
frame-level, and it consists of a combination of convolutional
neural networks (CNNs) (with or without residual connections)
and factorized time delay neural networks (TDNNFs). We also
explored several enhancement strategies for the train and test
data, speaker normalization and discriminative training. Results
are reported using the provided 3-gram language model (3G
LM) and after rescoring with a neural network language model
(RNN LM). Following system combination, the submitted sys-
tem achieves a performance of 35.89% and 37.54% WER us-
ing 3G LM on the development (DEV) and evaluation (EVAL)
sets, respectively. Using the RNN LM, our system achieves a
performance of 34.83% and 36.83% WER on DEV and EVAL,
respectively.

1. System Description
The Toshiba system entry for Track 1 of CHiME 2020 chal-
lenge is presented here. Track 1 is on building an automatic
speech recognition (ASR) system where the speaker diarization
information is provided. Track 1 is a follow-up of the multi-
array track from CHiME 2018 challenge [1], and is ranked into
two categories (A or B), based on the type of acoustic modeling
architecture and the type of language model used. The system
presented here uses conventional acoustic models trained with
phonetic targets tied to features at frame-level. Results are pre-
sented using both the baseline 3-gram language model as well
as rescoring with a neural network LM. The sections below de-
scribe the system’s components.

1.1. Speech Enhancement: Guided Source Separation

GSS enhancement is a blind source separation method aiming
to reduce the effect of speaker overlap initially proposed in [2].
Given a mixture of reverberated overlapped speech, GSS esti-
mates the parameters of a spatial mixture model which is then
used to calculate the posterior probabilities of active speakers to
drive a mask-based beamforming. Both vanilla (baseline) multi-
array GSS implementation provided by the organizers and a
modified version have been used to enhance speech for our sys-
tem. The modified GSS enhancement (GSS+ASR) was based
on improving the original speaker diarization information pro-
vided by the challenge using ASR-estimated silence informa-
tion, as described in [3].

1.2. Acoustic Model

A 15-layer factorized time delay neural network topology is
proposed as the baseline acoustic model for the challenge.
Training data consists of unprocessed worn (W) and array (U)

Table 1: Configuration of AMs used in this paper.

Enh. in train Topology SID DT VTLN 2-pass
W+U+U.rvb TDNNF(15) Base yes
W+U.WPE CNN-TDNNF(19) A no

W+U.GSS12

CNN-TDNNF(18) B no

CNN-TDNNF(19)

C X no
D X X no
E yes
F X yes
G X yes
H X X yes

RESNET(40)
I yes
J X yes
K X no

RESNET-TDNNF(49) L no
M X no

Acronyms:
2-pass 2-pass decoding with i-vector refinement
CNN Convolutional Neural Network (without residual connections)
DT Discriminative Training
RESNET CNN with residual connections
SID System ID
TDNNF Factorized Time Delay Neural Network
U array data
U.GSS12 Guided Source Separation (12-ch) enhanced U data
U.rvb simulated reverberated U data
U.WPE dereverberated U data using WPE [4]
VTLN Vocal Tract Length Normalization
W worn uprocessed data

data, augmented with simulated reverberated array speech
(U.rvb) and 3-fold speed perturbation (SP) [5]. 40-dim MFCC
and 100-dim i-vectors are used as acoustic features, training cri-
terion is LF-MMI and the standard language model is 3-gram.
The best accuracy for the baseline model is achieved using GSS
enhancement and 2-pass decoding with i-vector refinement dur-
ing testing.

For our system we have explored variability in: (a) acoustic
model topology; (b) training and test data enhancement, and (c)
acoustic features and speaker adaptation. Several AM topolo-
gies were chosen consisting of CNNs (with and without resid-
ual connections) and TDNNFs (Table 1). Training data and
number of AM layers are also specified in Table 1, as well
as whether discriminative training (DT) is applied on top of
standard LF-MMI trained models, speaker normalization is ac-
tive (vocal tract length normalization, VTLN), or whether 2-
pass decoding with i-vector refinement is being computed. All
models were trained using unprocessed worn data and array
speech enhanced either using Weighted Prediction Error (WPE)
dereverberation [6, 4] or vanilla multi-channel GSS enhance-
ment (12-channels, GSS12). The test data were enhanced us-
ing GSS+ASR with 12 and/or 24-channels [3]. Acoustic fea-
tures were 64-dim filter-bank (FBANK) features and 100-dim
i-vectors for all models but system ID (SID) B, where 64-dim



Table 2: Performance in %WER of individual components of
final system for the baseline language model.

SID DEV EVAL
GSS12+ASR GSS24+ASR GSS12+ASR GSS24+ASR

Base 51.39∗ - 51.38∗ -
A 45.81 44.79 46.09 46.78
B 44.88 - 49.48 -
C 42.47 42.15 44.28 45.03
D 41.74 41.73 43.84 44.92
E 42.67 42.28 44.78 45.11
F 41.78 41.49 44.21 44.72
G 41.66 41.13 44.11 44.66
H 41.27 41.34 43.71 44.80
I 41.34 41.06 42.42 43.09
J 41.07 40.55 41.84 42.94
K 40.86 40.53 42.41 43.12
L 42.03 - 42.78 -
M 41.71 - 42.86 -

A-M 35.89 37.54

FBANK were combined with 10-dim excitation based features
in [7]. Except SID B, all systems have used 3-fold SP; the train-
ing and decoding were performed in KALDI.

1.3. Neural network language model

A TDNN-LSTM language model has been used for performing
language model rescoring. The network consists of two LSTM
layers interleaved between 3 TDNN layers. The LSTM layer
has a cell dimension of 800, with a recurrent projection of 256
and a non-recurrent projection of 128; the word embedding di-
mension is 800. This model yields a perplexity of 140.5.

2. Results Category A
Performance of individual systems described in Table 1 using
the baseline 3-gram language model is presented in Table 2.
Performance of baseline CHiME 2020 system is also included
for comparison purposes; ∗note that Base numbers reported in
Table 2 are with GSS12 processed test data (without ASR re-
finement).

From the table, one can observe a significant ASR accuracy
improvement relative to the Base model for our systems. The
best accuracy is achieved by the RESNET topology, and per-
forming discriminative training (SID J) and vocal tract length
normalization (SID K) helps reduce the WER further. Our ex-
periments have shown that performing lattice combination us-
ing GSS12+ASR and GSS24+ASR streams lead to significant
WER improvements, therefore have been included in the final
system. Lattice combination of all systems and streams in Ta-
ble 2 yielded 35.89% and 37.54% WER on DEV and EVAL,
respectively.

3. Results Category B
Similar results for the RNN language model are depicted in Ta-
ble 3. Combining lattices of all systems and streams yielded
34.83% and 36.83% WER on DEV and EVAL, respectively.

4. Performance analysis
A session and room breakdown performance of the final sys-
tems for the 3-gram and RNN language models is provided in
Table 4.

Table 3: Performance in %WER of individual components of
final system for the RNN language model.

SID DEV EVAL
GSS12+ASR GSS24+ASR GSS12+ASR GSS24+ASR

A 44.64 43.42 44.62 45.38
B 43.39 - 45.66 -
C 41.01 40.71 43.07 43.92
D 40.53 40.56 42.96 43.74
E 41.42 40.93 42.85 43.74
F 40.74 40.38 42.84 43.73
G 40.57 39.99 42.74 43.43
H 40.10 40.02 42.70 43.99
I 40.29 40.04 41.84 42.29
J 40.11 39.76 41.00 42.19
K 39.94 39.62 41.42 42.27
L 41.14 - 42.05 -
M 40.85 - 42.16 -

A-M 34.83 36.83

Table 4: Detailed % WER performance for the final system.

Session Room 3G LM RNN LM
DEV EVAL DEV EVAL

S02
DINING 39.84 - 38.46 -

KITCHEN 41.67 - 40.65 -
LIVING 32.65 - 31.83 -

S09
DINING 36.03 - 34.47 -

KITCHEN 33.63 - 32.62 -
LIVING 31.14 - 30.14 -

S01
DINING - 31.31 - 30.56

KITCHEN - 53.03 - 52.80
LIVING - 43.38 - 42.80

S21
DINING - 29.91 - 28.64

KITCHEN - 45.45 - 44.99
LIVING - 30.16 - 29.25

Overall 35.89 37.54 34.83 36.83

5. Conclusion
In this paper we have summarized the Toshiba entry for Track 1
of CHiME 2020 Challenge. A conventional HMM-DNN ASR
system was proposed consisting of a combination of CNNs and
TDNNFs acoustic model topologies, ASR-refined multi-array
GSS enhancement, speaker normalization using VTLN and sec-
ond pass discriminative training. Results were reported using
provided 3-gram LM and after rescoring with an RNN LM. For
the 3-gram LM, our system has achieved 35.89% and 37.54%
WER on the development and evaluation sets, respectively. For
the RNN LM, our system has achieved 34.83% and 36.83%
WER on the development and evaluation sets, respectively.
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