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Abstract
This paper describes BUT’s efforts in the development of the
system for the CHiME-6 challenge with far-field dinner party
recordings [1]. Our experiments are on both diarization and
speech recognition parts of the system. For diarization, we em-
ploy the VBx framework which uses Bayesian hidden Markov
model with eigenvoice priors on x-vectors. For acoustic mod-
eling, we explore using different subsets of data for training,
different neural network architectures, discriminative training,
more robust i-vectors, and semi-supervised training on Vox-
Celeb data. Besides, we perform experiments with a neural
network-based language model, exploring how to overcome the
small size of the text corpus and incorporate across-segment
context. When fusing our best systems, we achieve 41.21 %
/ 42.55 % WER on Track 1, for development and evaluation re-
spectively, and 55.15% / 69.04 % on Track 2, for development
and evaluation respectively.

1. Contributions
1.1. Diarization

For Track 2, we based our diarization on agglomerative hier-
archical clustering (AHC) of x-vectors, followed by another x-
vector clustering based on Bayesian hidden Markov model and
variational Bayes inference (VBx). This approach was success-
fully applied to the Second DIHARD Challenge [2, 3, 4] and
we adapted it to comply with the rules of the CHiME-6 chal-
lenge. We used the speech activity detection (SAD), x-vector
extractor and probabilistic linear discriminant analysis (PLDA)
modules from the baseline recipe [5, 6]. Moreover, we used
only the enhanced recording from kinect U06 as in the baseline
recipe. However, we extracted the x-vectors every 0.25 s instead
of 0.75 s for having seen improvements previously [4].

Due to the high number of x-vectors to cluster, we used a
two-step AHC: we divided the x-vectors from the whole record-
ing into smaller groups accounting for several minutes, clus-
tered each one individually and finally performed clustering
with all the clusters to obtain four final clusters.

With a similar configuration but using a final threshold that
allows for underclustering, we obtained the AHC-based initial-
ization for VBx which was in turn run until convergence [4].

We further refined the diarization by a three-step procedure:
First, we provided the speaker labels from the first VBx diariza-
tion to guided source separation (GSS) [7] to obtain four record-
ings where each speaker is enhanced in one of them. Then we
ran the VBx diarization on each of the enhanced recordings and
finally, we pooled the labels corresponding to the respective en-
hanced speakers to produce the final diarization.

?Equal contribution.

The Performance of the methods is summarized in Table 1.
We think the difference in DER trends between development
and evaluation sets is explained in part by a larger proportion of
silence in the latter and worse performance of the SAD system,
which influences VBx performance more than AHC.

Table 1: Comparison of different diarization methods in terms
of Diarization Error Rate (DER) and Jaccard error rate (JER).

Development Evaluation
DER JER DER JER

Baseline 63.42 70.83 68.20 72.54
2-step AHC 60.21 65.21 71.84 71.80
VBx 51.67 53.20 75.11 71.77
VBx on GSS1 51.44 48.45 80.57 66.33

1.2. Enhancement

For the speech enhancement module, we have used the GSS
method provided by the baseline. We applied the enhancement
also on training data, using the oracle segmentation, and added
the data to our training set for both Track 1 and Track 2 (re-
ferred to as enhanced in Section 1.3). In Track 2, we used
the segmentation estimated by VBx diarization as guidance for
GSS. For estimation of the masks, we used 40 seconds context
on each side and the beamforming filters were estimated and
applied every 5 seconds. Table 2 summarizes how the diariza-
tion and enhancement effect the automatic speech recognition
(ASR) performance in Track 2. Results are obtained with the
system corresponding to the first row in Table 4. Note that there
is a slight inconsistency between these results caused by a dif-
ferent setting of decoding.

Table 2: Impact of diarization and enhancement on the ASR
performance on development set in Track 2. Column Diariza-
tion refers to the diarization used for ASR. We always used VBx
diarization for guidance in GSS.

Diarization Enhancement WER [%]

VBx BeamformIt 73.4
VBx GSS 62.9
VBx on GSS GSS 59.6

1In S01 we obtained five speakers so we slightly decreased VBx’s
FA for that recording since we know that would allow for less speakers.



1.3. Acoustic model

We explored the impact of different subsets of training data on
the performance of the acoustic model. The first combination
consisted of the left microphone from worn data with all far-
field data enhanced by GSS (Worn (L) + enhanced). Secondly,
we used both worn microphones with enhanced data as in [8]
(Worn (S) + enhanced). We further enlarged this dataset by
adding worn data augmented with artificial room impulse re-
sponses [9] (+ WornRVB). The final combination used worn
data from both microphones, enhanced data by GSS and a sub-
set of 250k non-overlapped parts of far-field data (+250k non-
overlapped). With all subsets, we applied speed perturbation
and data cleaning as in the baseline. Table 3 compares the re-
sults of these combinations. In all cases the acoustic model
was based on a convolutional time-delay neural network with
semi-orthogonal factorization (CNN-TDNNf) [10]. In all ex-
periments in this section, we used the baseline enhancement for
Track 1 and for Track 2 we used GSS enhancement and VBx on
GSS diarization.

Table 3: Comparison of WER [%] on the development set when
training the acoustic model with different data.

Track 1 Track 2

1 Worn (L) + enhanced 48.94 -
(1) + w/o cleaning 49.14 -

2 Worn (S) + enhanced 47.85 59.29
3 (2) + WornRVB 47.57 59.22
4 (3) + 250k non-overlapped 47.31 59.02

We also explored other approaches for improving the per-
formance of the acoustic model which we present in Table 4.
These are: Basic CNN-TDNNf system (1), Re-transcription of
the training data by basic CNN-TDNNf system and system re-
training on pruned (beam 3) output lattices (2), and extension of
lattice-free maximum mutual information with state-level mini-
mum Bayes risk (sMBR) (3). We also considered incorporating
segments from VoxCeleb [11, 12] data2 shorter than 5 seconds
for semi-supervised training (SST) (4). Then, we replaced the
baseline offline i-vector extraction by the online version. In do-
ing so, we dropped the baseline pseudo-speakers3 and treated
each person as a single speaker (5). Finally, we estimated a sec-
ondary offline i-vectors stream only on non-overlapped parts to
help the system to do speaker separation (6).

Table 4: Improvements of acoustic model using discriminative
training, semi-supervised training on VoxCeleb and 2-stream i-
vectors, compared on WER [%] on development set.

Track1 Track2

5 CNN-TDNNf 47.85 59.29
6 (5) + full-lattices 47.54 59.23
7 (5) + sMBR 46.37 58.86

8 (7) + VoxCeleb 45.81 57.25

9 (7) + speaker + online i-vector 45.36 57.12
10 (7) + non-overlapped + online i-vector 45.34 -

2This data was allowed only for Track 2 but we analyzed this ap-
proach on Track 1 too.

3These were supposed to capture speaker movement.

1.4. Language model

To improve over the baseline count-based language model,
we have trained a long short-term memory language model
(LSTM-LM) using BrnoLM toolkit4.

To overcome the tiny size of the available data, we have
combined two regularization techniques during training: the
standard dropout along non-recurrent connections and random
replacement of input tokens. We have obtained the best results
with dropout 0.5 and input corruption rate 0.3.

We rescored 3000-best hypotheses from the ASR lat-
tices, carrying over the hidden state between segments of each
speaker. Table 5 shows the improvements achieved with model
Worn (S) + enhanced + WornRVB + 250k non-overlapped from
Table 35. The gains were similar with other acoustic models.

Table 5: Results of rescoring the development set of Track 1
with LSTM-LM consisting of two 650-units layers. Perplexity
is for the each LM separately, WER is in interpolation of the
respective LSTM-LM with the baseline.

Perplexity WER [%]

baseline 157.7 48.24
+ LSTM 152.1 46.94
+ across-segment 136.5 46.61
+ input corruption 131.1 46.08

2. Final systems
For the final systems for both Track 1 and Track 2, we used
ROVER [13] fusion over different acoustic models. In all sys-
tems we used GSS enhancement of test data, and for Track 2,
VBx on GSS diarization.

For Track 1, we fused 8 systems: (3) + (4) + (5) + (6) + (7) +
(9) + (10) (in Tables 3 and 4) + CNN-TDNNf system trained on
Worn (S) + enhanced + 250k non-overlapped with full-lattices.

For Track 2, we fused 7 systems: (3) + (4) + (5) + (6) + (7) +
(8) + (9) (in Tables 3 and 4). The final results in the submission
format prescribed by the challenge are in Table 6 and 7.

Table 6: Final results on Track 1, Categories A and B.

Development WER Evaluation WER

Category A 42.75 44.34
Category B 41.21 42.55

Table 7: Final results on Track 2, Categories A and B.

Development Evaluation
DER JER WER DER JER WER

Category A 51.44 48.45 55.60 80.57 66.33 69.17
Category B 55.15 69.04

4https://github.com/BUTSpeechFIT/BrnoLM
5The corresponding WER there is further improved by MBR decod-

ing.
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