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Abstract

This paper presents our discription to the Chime-6 asr system.
We experimented different ways to improve the performance
of our asr system, including 1) training data augmentation via
different version of enhanced training data. 2) state-level mini-
mum bayes risk (sSMBR) training. 3) acoustic model fusion. 4)
system combination of different version of ehanced testing data
using minimum bayes risk (MBR) decoding. 5) the forward
and backward long short-term memory (LSTM) based language
modeling. Experiments shows our best system in category A
achieved 37.59 and 38.99 of word error rates (WERSs) for devel-
opment and evaluation set for trackl in category A.

Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Background

This paper presents our experiment for Chime6 chanllege.
We describe our effort to improve system performance for
trackl in category A and B. Our system compose the follow-
ing parts: 1). A front end including Source Activity Detec-
tor (SAD), weighted prediction error dereverberation (WPE),
guided source separation (GSS) and Minimum Variance Distor-
tionless Response (MVDR). 2). Acoustic modeling trained by
lattice-free maximum mutual information (MMI) criterion and
sMBR. 3). LSTM based language modeling trained on original
and reversed text for rescoring.

2. Contributions
2.1. Front-end

For frontend processing, we using the baseline frontend system
including SAD, SWPE, GSS and MVDR. To imporve the accu-
racy of SAD, besides the time annotations given by the organiz-
ers, we also take advantage of non silence alignments generated
by acoustic model.

2.2. Training data augmentation

We applied multiple types of data augmentation to enlarge the
data coverage. For worn microphone training data, we choose 2
type of channel selection to do front-end processing (x2). Then
the signal is augmented with speed perturbation (x3), volume
perturbation (x1), reverberation and noise perturbation (x2).
For multiple array data, we choose 5 types of channel se-
lection to do front-end processing (x5). Then speed perturba-
tion (x2) and volume perterbation (x1) is applied. The channel
selection of worn microphone and multiple array training data
is listed in tabel 1. 'L’ represents the left channel of each worn
microphone data is selected, while the 'R’ stands for right chan-
nel. *chl+ch4’ means the first and last channel of each multiple
array data is selecte, while ch2+ch4’ stands for the second and

last channel, *ch3+ch4’ stands for the third and the last channel.
’all” stands for all 4 channels of each multiple array data is se-
lected. ’ref-array’ stands for only all channels of the reference
are selected. For training data the reference array is manually
set to be array ID of *U02’. Finally, the training data is com-
posed by the following parts.

e D1) Original worn microphone data.

e D2) Multiple array Data with 5 types of channel selec-
tion after frone-end processing along with its augmented
data.

* D3) Worn microphone data with 2 types of channel se-
lection along with its augmented data.

These procedure finally result in 940 hours of training data.
We have investigated the impact of training data based on offi-
cial TDNN-F structures. Table 2 shows the effect of data aug-
menation.

Table 1: channel seletion of training data

| worn | mutiple array |

chl+ch4
L ch2+ch4

ch3+ch4
L+R all

chl

ref-array

Table 2: Comparison of acoustic models trained with different
data

Data dev
baseline 51.73
D1+D2 46.48

D1+D2+D3  45.87

2.3. Acoustic models

In the back-end, we use 3 different kinds of acoustic mod-
els, all trained on LF-MMI criterion using kaldi toolkit. The
asr system include TDNN-F (30 layers) nework, CNN-TDNN
(11-layer CNN + 20-layer TDNN) trained and CNN-TDNN-
LSTM. The model architecture of CNN-TDNN-LSTM model
is shown in figure 1. TDNN-F network is trained with offical
MFCC features and 100-dimension online ivector. CNN-TDNN
is trained with 80-dimensional logmel-filterbank (LMFB) fea-
tures and online ivector. CLDNN is trained with MFCC, LMFB
and online ivector feautures. The 3 models are first trained
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Figure 1: architecture of CNN-TDNN-LSTM network.

with full dataset (D1+D2+D3) with LF-MMI criterion, and fur-
ther fine tuned with SMBR criterion on small training dataset
(D1+D2). The 3 acoustic models show strong complementarity
when fused together. The comparision of the performance of
the 3 models is shown in table 3.

Table 3: Comparison of network structures

Model structure dev

baseline 45.87
TDNN-F(30) 45.19
+sMBR 44.69
CNN-TDNN 44 .48
+sMBR 44.05
CNN-TDNN-LSTM  44.97
+sMBR 44.06

2.4. decoding

As for development and evaluation data, we choose 1 types of
channel selection (namely ’chl-ch4’) to do front-end process-
ing. The enhanced signal is sent to the 3 acoustic models to
caculate posterior respectively. We first ensemble the 3 acous-
tic models via state posterior averaging, and send the averaged
posterior to the decoder. Then we do a second pass decoding
by introduce non silence alignments generated by the ensemble

model to refine activity in the front-end. This time, we choose
4 types of channel selection ("chl+ch4’, *ch2+ch4’, "ch3+ch4’,
"all’) to do front-end processing to generate 4 enhanced signal.
Again, we decode the 4 signal with model ensemble and get 4
decoding results for each enhanced signal. Finally we use MBR
decoding method to combine the results of the 4 enhanced sig-
nal. The performance of model ensemble and MBR decoding is
shown in tabel 4.

Table 4: Performance of model ensemble and MBR decoding

method dev

posterior averaging  41.52
+alignment 39.71
+MBR decoding 37.59

2.5. Language models

We trained recurrent network for language models by using of-
ficial original and reversed transcription of training data. We
prepare two 2-layer LSTM models with forward and backward
direction. In the rescoring stage, the language score of offical
LM, the forward LSTM and backward LSTM is weighted with
0.4:0.3:0.3. The performance of our language model in rescor-
ing is shown in table 6.

3. Experiment evaluation

Our final results is shown in Table 5 (category A without RNN-
LM) and in Table 6 (category B with RNN-LM). Our best sys-
tem in category A achived 37.59 of WERs, and 35.95 of WERS
in category B for development set. In addition, our best sys-
tem achived 38.99 of WERs in category A, and 37.45 WERs in
category B for evaluation set.

Table 5: WERS for category-A best system without RNN-LM

| Track | Session | DINING | KITCHEN | LIVING | Overall |
trackl | Dev | S02 | 41.42 43.35 34.76
S09 | 36.64 34.95 33.45 37.59
Eval | SO1 | 33.26 53.93 45.95
S21 | 31.74 45.25 31.82 38.99
Table 6: WERS for category-B best system with RNN-LM
‘ Track ‘ Session ‘ DINING ‘ KITCHEN ‘ LIVING ‘ Overall ‘
trackl | Dev | S02 | 39.59 41.83 33.52
S09 | 34.66 33.13 31.48 35.95
Eval | SO1 | 31.69 52.32 44,99
S21 | 30.00 43.52 30.23 37.45




