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Abstract
This paper describes our system and experimental results for the
6th CHiME Challenge. We participate in Track1(ASR only) on
Category A and B.

Our system mainly include data preparation, frontend pro-
cesing, acoustic modeling, lattice rescoring with RNN Lan-
guage Model(RNNLM) and system combination.

The frontend employs the baseline Guided Source Sepa-
ration(GSS) [1]. For backend, we use TDNN-F and CNN-
TDNNF [2] acoustic models, and finally apply Minimum Bayes
Risk(MBR) [3] decoding for multiple lattices of different acous-
tic models.

Comparing with the offical baseline system, our system can
get 20.44% and 18.07% relative Word Error Rate(WER) reduc-
tion on the dev and eval sets respectively.

1. Background
The system focus on Track1(ASR only) with conventional
acoustic model, our submission system include data prepara-
tion, frontend, acoustic modeling, language modeling and sys-
tem combination with MBR decoding. Figure 1 shows the
framework of the submission system. With the proposed sys-
tem, we finally achieve 41.18% and 42.02% WER on the dev
and eval sets respectively. The rest of paper is organized as fol-
lows, section 2 describes the system in detail. The details of our
expermental evaluation are given in section 3.

2. System Description
The overall framework of our system constain data preparation,
frontend processing, acoustic modeling, language modeling and
decoding, which is described in detail as follows:

2.1. Data Preparation

For the training data, comparing to official baseline, in addition
we clean up and augment the data on the following aspects :

• For the worn(L+R) microphone training data, realign
original utterance segmentation using ASR model

• We apply only speed perturbation for the traning data
without the volume perturbation

• Clean up the training data by filtering out segments
which are less than 1 second

• Remove some noises which can be recognized as words
from noises used in Room Impuse Responses(RIR) [4]
convolution

With the above data cleanup and data augmentation methods,
we obtain about 1400 hours of data as the final training set,
which contains the following dataset:

• The realigned worn(L+R)training data
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Figure 1: Framework of system.

• The far field data enhanced by GSS module

• The worn data and enhanced far field data both con-
volved with RIRs

• The augmented previous three datasets by speed pertur-
bation

2.2. Frontend processing

For frontend processing, compared to the official baseline setup,
we apply the GSS not only in testing stage but also in training
stage.

2.3. Acoustic modeling

For acoustic model training, we use two different kinds of
acoustic model structures based on lattice-free maximum mu-
tual informaton (LF-MMI) training. They are TDNN-F net-
work and CNN-TDNN-F network with the {40, 80}-dimenstion
MFCC and 100-dimenstion online ivector. We train various
acoustic models with different parameters and all the acoustic
models are trained using Kaldi [5] toolkit. We use the following
acoustic models:

• CNN-TDNN-F{1, 2, 3, 4}: GSS module with {10, 15}
context, 40-dim MFCC, 6-layer CNN + 19-layer TDNN-
F with bottleneck-dim = 512, NUM-PDFS = {2500,
3500}, RIR augment

• CNN-TDNN-F{5, 6}: GSS module with {10, 15} con-
text, 40-dim MFCC, 6-layer CNN + 19-layer TDNN-F
with bottleneck-dim = 768, NUM-PDFS = 3500, RIR
augment

• CNN-TDNN-F7: GSS module with 15 context, 80-
dim MFCC, 6-layer CNN + 19-layer TDNN-F with
bottleneck-dim = 512, NUM-PDFS = 3500, RIR aug-
ment



• TDNN-F8: GSS module with 15 context, 40-dim
MFCC, 25-layer TDNN-F with bottleneck-dim = 512,
NUM-PDFS = 2500, RIR augment

2.4. Language modeling

For Category B, based on the offical transcription of the train-
ing data, we build a 2-layer LSTM-based language model and
rescore the lattice using the score of LSTM-based LM and offi-
cal n-gram LM with a weighting of 0.55 and 0.45 respectively.

2.5. Decoding

In decoding phase, we use multiple acoustic models which are
described in acoustic modeling section. Firstly, we get the lat-
tices from each acoustic model. Then we combine all the lat-
tices and apply MBR decoding to get the final result.

3. Expermental evaluation
3.1. Acoustic models

For acoustic models, we use official TDNNF model with 15
layers, deeper TDNNF model with 25 layers and CNN-TDNNF
model which 6 convolution layers and followed by 19 TDNNF
layers. Table 1 compare the three acoustic models using the
official training data and frontend module.

Table 1: WER(%) of different acoustic models on the dev and
eval sets

AM dev eval
tdnnf15 51.76 51.29
tdnnf25 50.77 50.30

cnn-tdnnf25 48.53 48.15

3.2. Frontend

In order to match the data in testing stage, we also apply GSS
module for all multi-array data in the training stage, instead
of randomly selecting 400k utterances from multi-array data in
baseline. The result of WER is presented in Table 2. Compared
to the official baseline, WER is reduced by 2% absolutely on
dev set. We conjecture that the multi-array GSS training data
are more compatible with dev and eval dataset. Furthemore,
as a result of multi-array GSS in training stage, the amount of
training data is reduced from 1500 hours to 240 hours. Conse-
quently, it can speed up acoustic model training.

Table 2: WER(%) of different frontends on the dev and eval sets

Frontend dev eval
baseline 48.53 48.15

multi-array GSS in training stage 46.54 48.02

3.3. Data augmentation

By applying GSS module in training stage, it significantly re-
duce the amount of training data. In order to augment the train-
ing data, we repalce the L channel worn data with the L+R chan-
nel worn data and realigned (L+R) channels worn data respec-
tively, WER can be reduced by 0.99% and 0.72% absolutely on
dev and eval sets. After RIR data augmentation, the amount of
training data increase by 4 times. It has a total of 1800 hours.

After cleaning up, there are 1400 hours left which is equivalent
to the baseline. RIR data augmentation greatly improves the
performace of our system. We achive 0.49% and 1.53% WER
absolutely reduction on the dev and eval sets.

Table 3: WER(%) of different datasets on the dev and eval sets

data dev eval
multi-array GSS + worn(L) 46.54 48.02

multi-array GSS + worn(L+R) 45.55 47.30
multi-array GSS + aligned worn(L+R) 45.80 47.34

multi-array GSS + aligned worn(L+R) + RIR 45.31 45.81

3.4. Feature

Comparing to model in the last line of Table 3 which used 40-
dimenstion MFCC, we find that using 80-dimenstion MFCC
can get 44.99% and 45.28% WER on the dev and eval sets.

3.5. System combination

Finally, we combine lattices produced by multiple acoustic
models descibed in section 2.3, the WER of each acousti model
are presented in Table 4 and then apply MBR decoding to get
the final result. In Track1, for Category A, we get the lattice
using offical N-gram LM, combine lattices and apply MBR de-
coding. At last we achieve the WER of 41.99% and 42.41%
on the dev and eval sets. For Category B, The only difference
is to rescore the lattices by using RNNLM, we get 41.18% and
42.02% of WER on dev and eval sets.

Table 4: WER(%) of different acoustic models on the dev and
eval sets

AM dev eval
CNN-TDNN-F1(10,2500) 45.20 45.76
CNN-TDNN-F2(10,3500) 45.00 45.58
CNN-TDNN-F3(15,2500) 45.61 45.74
CNN-TDNN-F4(15,3500) 45.31 45.81

CNN-TDNN-F5(10) 45.46 45.80
CNN-TDNN-F6(15) 45.50 46.17

CNN-TDNN-F7 44.99 45.28
TDNN-F8 46.66 47.14

3.6. Results summary

To summarize, the final results of our system in detail on the
development and evaluation sets are reported in Table 5.

Table 5: WERs of the system in Track1(ASR only) for Category
A and Category B

Category Session Kitchen Dining Living Ave

A
Dev S02 47.42 45.57 38.31 41.99S09 39.28 43.22 38.80

Eval S01 58.00 35.83 47.80 42.41S21 51.49 35.09 34.43

B
Dev S02 46.66 45.00 37.47 41.18S09 38.48 41.99 38.04

Eval S01 57.56 35.47 47.76 42.02S21 50.95 34.95 33.75
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