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Abstract
This paper describes the Academia Sinica systems for the tracks
of multiple-array ASR (Track 1) and diarization+ASR (Track2)
in the 6th CHiME Challenge. For Track 1, we take a differ-
ent approach from the official baseline to preprocess the Kinect
data and derive the state-level alignment. In addition, we de-
velop two LF-MMI-based acoustic models, the discriminative
autoencoders (DcAE) and the feature-enhanced acoustic model
(FEAM), which consider feature-level regularization and en-
hancement, respectively. For Track 2, we propose a new CNN-
based training scheme, which develops speech representations
by expanding the data into a set of segments, each of which
contains more than one speaker. In training, a soft label is ap-
plied to each segment based on the speaker occupation ratio,
and the standard cross entropy loss is used. In the evaluation
set, our best system for Track 1 (Category A) achieves 46.8%
WER, slightly better than the baseline performance (51.4%).
For Track 2 (Category A), our system is also superior to the
baseline while using the same TDNN-based acoustic model.
The DER, JER, and WER are relatively improved by 13.24%,
12.60%, and 6.57%, respectively.

1. System Descriptions
We describe our systems for both tracks in the 6th CHiME Chal-
lenge (CHiME-6). For details of the CHiME-6 datasets and
tasks, please refer to the official website1 and [1].

1.1. Track 1: ASR

The training process of our ASR system is divided into two
parts, front-end data processing and back-end acoustic model-
ing. As shown in the upper part of Figure 1, we first used the
worn set and the Kinect set to train the GMMs. The worn set
comes from the L and R channels in the worn microphone data,
and is combined with the simulated reverberant speech using
RIRs and point-source noises [2]. In the baseline program2,
the Kinect set consists of 400k utterances randomly selected
from all Kinect channels without any enhancement. Our Kinect
set, instead, comes from 1) all the first channel utterances of
the Kinect data and 2) the corresponding enhanced utterances,
where all channels with time annotations were passed to the
front-end of weighted prediction error (WPE), guided source
separation (GSS), and BeamformIt (BF) [3, 4, 5].

Following the model structure and training steps of the
baseline program2, we first created the phone alignment for the

1https://chimechallenge.github.io/chime6/
overview.html

2https://github.com/kaldi-asr/kaldi/tree/
master/egs/chime6/s5_track1/
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Figure 1: Flowchart of data preparation in our system, where
“U” and “ch” denote “Kinect” and “channel”, respectively.
The dotted line path is the method of forming the Kinect set in
the baseline program.

worn set based on the GMMs, and performed a data cleanup
procedure. We then created the alignment and lattice for the
complete training set for the NN-based acoustic models (AMs)
by copying the alignment of the corresponding L channel in the
worn set, i.e., the alignment expansion in [6].

To train the NN-based AMs, the training set was augmented
by two data augmentation techniques, namely speed perturba-
tion and volume perturbation. Bandpass perturbation [6] was
not successful in our experiments.

The architectures of our two newly proposed AMs are de-
picted in Figure 2. The first AM is discriminative autoencoders
(DcAEs) [7], which attempts to effectively separate the phonetic
part (P-Code) and the residual part (R-Code) in the embedding
space. In this challenge, we not only corrected several minor
mistakes in our previous implementation, but also upgraded its
structure from “nnet3” to “chain”. In this way, the LF-MMI cri-
terion, the cross-entropy loss, and the mean squared error can
be optimized simultaneously by Kaldi’s training procedures.

The second AM is the feature-enhanced acoustic model
(FEAM) as shown in Figure 2 (b). In FEAM-U, “-U” means
that the U-Net is used. There are also two kinds of output layers,
one is the phone-state scores for the LF-MMI criterion and the
cross-entropy loss, and the other is the generated acoustic fea-
tures. The acoustic features generated by the feature-enhanced
networks (FENs) are expected to be close to the corresponding
worn features during training. That is, we assume the worn set
is almost clean, so that FENs can play a role in further enhanc-
ing the Kinect features.

In summary, we used five AMs, including DcAE-B, DcAE-
U, FEAM-U, TDNN-F, and RBiLSTM [8, 6, 2]. All of them
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Figure 2: Our NN-based acoustic models. In (a), FC denotes
the fully-connected layers, and U-Net is used in DcAE-U but not
in DcAE-B. In (b), FEN denotes the feature-enhanced networks
using the TDNN layers.

were trained on the “chain” structure using the Kaldi Toolkit,
with the input combining 40-dimensional MFCCs and the 100-
dimensional i-vector.

In the decoding phase, all Kinect channels were processed
by WPE, GSS, and BF to form a single-channel utterance. Fi-
nally, we used the N-best ROVER method to combine the re-
sults from different AMs [9].

1.2. Tack 2: Diarization + ASR

For Track 2, we basically followed the baseline program3, in-
cluding the constitution of training set, dereverberation proce-
dures, speech activity detection (SAD), and the back-end of
PLDA and AHC. In the baseline program, BF is used to com-
bine and enhance all channels of each Kinect into one channel.
However, in our system, some failures for unknown reasons oc-
curred when BF was performed on all channels of all Kinects.
Therefore, we tried all possible combinations of channels and
selected the set that contains the most compatible channels.

A typical speaker diarization system is composed of two
components, a speaker model and a back-end processor, work-
ing for extraction and clustering of speaker representations,
respectively. The main weakness of most speaker models
might be the incompetence to discriminate short-duration seg-
ments, e.g., less than 2 seconds, and the ineffectiveness to ex-
tract a reliable speaker embedding when a segment contains
more than one speaker. Speaker representation is crucial to
speaker diarization especially when segment clustering is per-
formed. Therefore, we propose a new training scheme to
develop speaker representations by randomly augmenting the
training data with segments that contain more than one speaker.
That is, we attempt to produce one or more “speaker change” in
each mini-batch while training. Thereinto, a soft label was ap-
plied to each segment (sample) based on the speaker occupation
ratio and the standard cross entropy loss was used. Take Figure
3 for example, if the ground truths of samples 1 and 2 in the
traditional case are [1, 0, 0] and [0, 1, 0], they can be [3/8, 5/8,
0] and [2/8, 3/8, 3/8], respectively, in our proposed case. The
ratio of the number of multi-speaker segments to the number of
single-speaker segments is about 13.64%.

To build a speaker model, we employed the CNN-based

3https://github.com/kaldi-asr/kaldi/tree/
master/egs/chime6/s5_track2/
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Figure 3: Illustration of the traditional training scheme and our
proposed training scheme with respect to the speaker distribu-
tion in a mini-batch. Each sample (segment) contains 8 acoustic
frames and the mini-batch size is 3.

ResNet-34 architecture, where the feature kind, training hyper-
parameters, specification of layers, aggregation type, and loss
function are almost the same as the baseline system described
in [10]. The only difference is that we added one additional res-
layer with 256 channels and 3 blocks to the original model in
order to extract the 256-dimensional speaker embeddings. The
VoxCeleb-2 Corpus was used for training the speaker model.
The best model checkpoint was determined by JERs of the
CHiME-6 development set.

The initial speaker label for each segment was given
through clustering the speaker embeddings. Resegmentation
was subsequently performed with variational Bayes (VB) di-
arization [11], where a 2048-component UBM-GMM with di-
agonal covariance matrices and 400 eigenvoice bases were
trained in advance with 30-dimensional MFCCs . Moreover,
the initial speaker label was used for initialization in the VB di-
arization model. The tunable parameters, such as the minimum
duration, loop probability, downsampling factor, and maximum
number of iteration, were determined by the development set,
and were set to 1, 0.998, 1, and 1, respectively.

2. Experiment Results
The results for the development and evaluation sets are pre-
sented in Tables 1 and 2.

Table 1: WERs (%) for Track 1 and Track 2 (Category A only).

Track 1 Track 2

Model Dev Eval Dev Eval

Baseline 51.32 51.36 84.25 77.94

TDNN-F 50.12 49.36 75.89 73.68
RBiLSTM 52.43 50.26 76.90 73.39
DcAE-B 50.12 49.68 75.90 73.66
DcAE-U 49.86 49.63 75.78 73.54
FEAM-U 53.47 52.70 78.70 76.20

ROVER 47.28 46.82 74.36 71.56

Table 2: Results for Track 2. The acoustic models are the same.

Dev Eval

Model DER JER WER DER JER WER

Baseline 63.42 70.83 84.25 68.20 72.54 77.94

Proposed 56.77 60.62 75.57 59.17 63.40 72.82
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