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Abstract
The paper presents IOA’s submission to the 6th CHiME Chal-
lenge. Our systems include the front-end enhancement combin-
ing deep learning-based and probabilistic model-based source
separation, training data augmentation, acoustic modeling with
multi-channel branches and system fusion. Tested on the evalu-
ation sets, our best system for Track 1 Category A/B has yielded
35.11%/34.53% word error rate (WER) respectively, with an
absolute reduction of 16.18%/16.76% compared with the base-
line model.

1. System overview
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Figure 1: The (a) training and (b) testing phase of our systems.

This report describes our contribution to the 6th CHiME
challenge (CHiME-6), which provides speech data recorded in
the real party scenario via microphone arrays and presents ex-
treme speech overlap and unrestrained speaking styles [1]. Our
systems are designed for Track 1 Category A/B. Figure 1 shows
the framework of the training and testing procedures of our sys-
tems. It consists 5 parts, including deep learning-based single-
channel speech separation (SS), multi-channel speech enhance-
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ment with guided source separation (GSS), training data aug-
mentation, acoustic modeling and system combination.

In the training phase, we first train 1-stage SS models for
each speaker in each session (SS1), a universal speech enhance-
ment model (SE). The separated audios serve as a part of train-
ing database. Then a 2-stage GSS is initialized with the speaker
and noise masks, further refined by ASR alignments. 3 types of
acoustic models with multi-channel branches are trained with
the dataset augmented with additional data.

In the testing phase, we train 2-stage speech separation
models (SS2). A 3-stage GSS is deployed to perform multi-
channel speech separation. The final results are obtained with
posterior probability fusion.

The detailed descriptions of the systems and the word error
rate (WER) results on the development (Dev.) and evaluation
(Eval.) sets can be found in the following sections.

2. Front-end processing
2.1. Deep learning-based single channel source separation
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Figure 2: The (a) SS1/2-spk and (b) SS2-sess model for single
channel speaker separation.

The deep learning-based single-channel source separation
is to generate source masks and embeddings. The SS1-spk and
SS2-spk models are trained for each speaker in each session.
The SE models are training with progressive learning, similar
with [2]. The SS2-sess models serve as unified models to sep-
arate speakers as well as to extract source embeddings for each
session. The model is trained to optimize the multi-task loss
of affinity matrix [3] and phase-sensitive masks [4] (Figure 2).
In our experiments, the SS1-spk models utilize non-overlapping
utterances. The SS2-spk and SS2-sess models additionally use
audios separated by SS1-spk and enhanced by 1-stage GSS.

2.2. Multi-channel guided source separation

We have developed the multi-channel separation based on the
GSS [5]. The overall framework of systems is given in Figure
3. All the 24 channels audios are dereverbed with the weighted
prediction error (WPE) [6]. SS and SE masks combined with
annotations and alignments are served as an initialization of the
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Figure 3: The frame work of 3-stage GSS. The number repre-
sents the data flow in the 1,2,3(∗) stages individually.

complex angular central Gaussian model (CACGMM). After it-
erations, the masks representing the target speaker and the in-
ference are used to do beamforming.

In the 3-stage GSS, the 2nd stage utilizes alignment gen-
erated by the 1st stage, the 3rd stage selects the microphones
based on the signal-to-noise (SNR) information from the 2nd
stage. The 3∗-stage differs by using von Mises-Fisher (vMF)-
CACGMM model [7] with embeddings from SS2-sess and se-
lecting microphones with the fusion of SNR- and coherency-
based [8] methods.

The 2-stage GSS, which is adopted in the training phase to
generate enough data, consists of the 1st and 3nd stages. The
array selection is in random to output 7-fold data, named ENH
in Figure 1.

Each stage’s performance of the front-end processing is pre-
sented in Table 1.

Table 1: The Front-end results on the Dev. with CNN-TDNNF
trained with WORN and ENH data [9].

Stage Baseline 1 2 3 3∗

WER(%) 45.42 43.02 42.62 42.14 41.75

3. Acoustic models
3.1. Training data and settings

The whole training set contains worn headset data (WORN),
far-field microphone array data (FAR), simulated data (SIMU),
multi-channel enhanced data (ENH), totally 4 parts. The FAR
data is made up of the original far-filed audios and single-
channel audios enhanced by SS1 models. The SIMU data is
generated by convolving the WORN data with image-based
simulated room impulse responses (RIRs) and estimated RIRs
calculated by the far and worn audio pairs. Moreover, it is ob-
served that the short utterance combination can benefit the per-
formance of the acoustic models. We have created 2 training
sets, a small one with only WORN and ENH data, a large one
with all mentioned data.

3.2. Networks

Totally 9 acoustic models are trained for the final fusion. They
are derived from CNN-TDNNF trained on the small set, CNN-
TDNN-BLSTM trained on the large set and CNN-BLSTM
trained on the large set (Table 2). A multi-channel branch is
introduced with CNN architectures, whose input is log power
spectral (LPS) and magnitude squared coherence (MSC) [10].
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Figure 4: The ensemble results of different architectures on the
Dev.. * means the audio is from 3∗-stage GSS.

The branch is trained in 2 ways, partial update and full update
[12].

The results of the acoustic model ensemble are plotted in
Figure 4. The fusion adopts the weighted average of log poste-
rior probability according to Table 2.

Table 2: An overview of the number of single- and multi-channel
acoustic models.

Architecture Single-channel Multi-channel

CNN-TDNNF 3 3
CNN-TDNN-BLSTM 3 2

CNN-BLSTM 3 1

4. Conclusion
We present the performance details of our fusion systems,
which are tuned on the Dev. set and tested on the Eval. set.
For Category B, a language model based on the recurrent neu-
ral network (RNN) is trained for rescore. It yields around 0.6%
improvement for both Dev. and Eval. sets.

Table 3: The WERs (%) of our best systems for Category A and
B.

Category Session Dining Kitchen Living Ave

A

S02 38.30 38.50 31.59
33.55S09 32.25 30.07 29.23

S01 29.58 48.49 42.72
35.11S21 29.76 39.66 28.60

B

S02 37.51 38.02 31.06
32.92S09 31.54 29.69 28.11

S01 28.83 48.61 41.64
34.53S21 29.14 39.39 28.03
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