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Abstract
This paper summarizes the JHU team’s efforts in tracks 1 and 2
of the CHiME-6 challenge for distant multi-microphone conver-
sational speech diarization and recognition in everyday home
environments. We explore multi-array processing techniques at
each stage of the pipeline, such as multi-array GSS for enhance-
ment, posterior fusion for speech activity detection, PLDA
score fusion for diarization, and lattice combination for ASR.
We also integrate other techniques such as online multi-channel
WPE dereverberation and VB-HMM based overlap assignment
to deal with challenges like background noise and overlapping
speakers, respectively. As a result of these efforts, our best sys-
tem achieves a WER of 40.47% and 67.51% on tracks 1 and 2,
respectively, on the evaluation set, which is an improvement of
10.82% and 10.43% over the baseline system for the challenge.
Index Terms: CHiME-6 challenge, robust speech recognition,
speaker diarization, multi-channel, multi-speaker

1. System Description
Fig. 1 shows the components of our system for track 2. We use
a similar system for track 1, except that the SAD and diarization
blocks are replaced with the oracle segmentation.

1.1. Enhancement

1.1.1. Dereverberation and beamforming

We use an online version of the publicly available NARA-
WPE [1] implementation of weighted prediction error based
dereverberation for multi-channel signals [2] for all the chan-
nels in each array. This is followed by array-level beamforming
using the BeamformIt tool [3]. All further processing is done
on the beamformed signals.

1.1.2. Guided source separation (GSS)

Multi-array GSS [4, 5] is applied to enhance target speaker
speech signals given the oracle speech segmentation in track
1 and the segmentation estimated via our speaker diarization in
track2, respectively. We investigated the effectiveness of GSS
by focusing on the neighboring context and show significant
improvement (8.96% and 4.30%, respectively in tracks 1 and 2)
with 20 second context.

1.2. Speech Activity Detection

We use a TDNN-Stats neural network trained to classify frames
as C = {silence, speech, garbage}. The training targets are gen-
erated using alignments obtained from a GMM-HMM system.
We further apply posterior fusion over the output distribution

∗ equal contribution

Figure 1: Overview of the decoding pipeline for track 2.

from all the arrays, i.e., for a frame t, ∀i ∈ C, pt(i) = f(pkt (i)),
where k denotes the arrays and f is the fusion criterion. We
found that setting f({xi}) = max(xi) is a simple and effective
fusion scheme. We apply 0.01s frame shift and 0.2s padding on
the speech segments during post-processing.

1.3. Speaker Diarization

For diarization, we perform agglomerative hierarchical clus-
tering (AHC) on the PLDA similarity scores computed be-
tween x-vectors [6] extracted from 1.5s windows with 0.25s
shift [7]. The x-vector extractor consists of TDNN layers with
stats pooling (similar to [8]), and is trained on VoxCeleb data [9]
augmented with CHiME-6 background noises and simulated
RIRs [10]. The PLDA parameters were trained on a 100k sub-
set of the CHiME-6 training data. Similar to our score fusion
method in SAD, we perform multi-array PLDA score fusion be-



Table 1: Speech activity detection results in track 2.

System Dev Eval
MS FA Total MS FA Total

Baseline (U06) 2.7 0.6 3.3 4.4 1.5 5.9
Fusion 1.1 0.8 1.9 2.4 2.8 5.2

Table 2: Diarization results for track 2.

System Dev Eval
DER JER DER JER

Baseline (U06) 63.42 70.83 68.20 72.54
PLDA Fusion 63.97 71.65 71.56 71.32
+ 0.25s shift 61.00 66.23 69.64 69.81
+ overlap assign. 58.18 59.92 69.92 65.64

fore the clustering stage. Again, using f({xi}) = max(xi) for
the fusion function is found to be effective.

1.3.1. VB-based overlap assignment

Since AHC is not designed to handle overlapping speaker seg-
ments, we use a Variational Bayes Hidden Markov Model (VB-
HMM) which leverages an LSTM-based overlap detector to as-
sign frames to multiple speakers if an overlap is detected [11].
Finally as a post-processing step, we remove segments shorter
than 200 ms.

1.4. Speech Recognition

1.4.1. Acoustic modeling

We incrementally train a monophone, a triphone (tri1), an LDA-
MLLT (tri2), and a SAT (tri3) HMM-GMM systems, and use
the tri3 model for generating alignments for neural network
training. Before tri3 training, we also re-compute the pronunci-
ation and silence probabilities using the tri2 system.

We train a CNN-TDNN-F model [12] on a combination of
worn mic utterances (80h), beamformed array data (160h), and
multi-array GSS enhanced data (40h) [13]. Cleanup is per-
formed on this training data [14], which reduces it to ∼200h.
We augment the resulting data with three-fold speed perturba-
tion, but no reverberation is used. At inference time, we per-
form a 2-stage decoding similar to [15], where utterance-level
i-vectors are used in the first pass, and then reweighted only
with high confidence regions in the second pass.

1.4.2. Language modeling and rescoring

We use the transcription of training data to build our language
models (LM). We use a 3-gram LM trained with the SRILM
toolkit in the first pass decoding. For neural LMs, we use Kaldi
to train recurrent neural network LMs (RNNLMs) [16]. We
perform a pruned lattice rescoring [17] with a forward and a
backward (reversing the text at the sentence level) LSTM. We
first rescore with the forward LSTM and then perform another
rescoring on top of the rescored lattices using the backward
LSTM. Both LSTMs are a 2-layer projected LSTM model.

1.4.3. Lattice combination

For track 1, we use lattice combination method to combine
three CNN-TDNN-F acoustic models. For track 2, we perform

Table 3: WERs on Track 1.

System Dev Eval

Baseline (U06) 51.75 51.29
CNN-TDNN-F AM 49.59 49.37
+Augmentation 44.51 44.92
+Overlap Feature 44.37 44.54
+LM Rescoring 42.82 42.94
+Lattice combination 41.75 42.07
+Lattice combination and Rescoring 40.27 40.47

Table 4: WERs on Track 2.

System Dev Eval

Baseline (U06) 84.25 77.94
CNN-TDNN-F AM 82.53 75.83
+PLDA Fusion 78.24 73.55
+GSS 70.97 68.75
+VB Overlap Assignment 69.28 68.78
+LM Rescoring 68.69 67.94
+Lattice combination 68.29 68.26
+Lattice combination and Rescoring 67.76 67.51

GSS with different input signals (multi-array beamforming and
also individual array beamforming), and then we perform array
level lattice combination. We decoded each array data using a
common RTTM and on these decoded output, performed lattice
combination.

2. Challenge Results
2.1. Speech activity detection

Table 1 shows the results (missed speech (MS) and false alarm
(FA)) for the posterior fusion method compared with the base-
line. We used the original RTTM (obtained from transcriptions)
for scoring the SAD.

2.2. Speaker diarization

We show results ablation for diarization in Table 2, scored using
the force-aligned reference RTTM 1.

2.3. Speech recognition

We show improvement in WER from different modifications in
track 1, Table 3. Our acoustic model consist of 6 convolutional
layers and 16 TDNN-F layers trained with LF-MMI objective
function. To train the model in similar to test conditions, we
augmented the training data with test enhancements [13]. We
added 1 bit oracle overlap information in neural network train-
ing which gave small improvement. The WER improvements
from the frontend, our diarization, RNNLM rescoring and lat-
tice combination are shown in Table 4.

1The DER is 5-6% better when scored using the original RTTM
obtained from the reference transcriptions. We attribute this difference
primarily to an increase in false alarms due to removal of short silence
between words in the new RTTM.
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